Engine maintenance costs are a major contributor to the direct operating costs of aircraft. Therefore, the minimization of engine maintenance costs per flight-hour is a key aspect for airlines to operate successfully under challenging market conditions. Minimization can be achieved by increasing the on-wing time or by reducing the shop-visit costs. Combining both provides optimum results and can only be achieved by thorough understanding of the engine. In the past, maintenance optimization was mainly an experience-based process. In this work, a novel analytical approach is presented to optimize the maintenance of commercial turbofan engines. A real engine fleet of more than 100 long-haul engines is used to demonstrate the application. The combination of advanced diagnostic and simulation methods with classical hardware-based failure analysis enables linking of overall engine performance with detailed hardware condition and, thus, an effective optimization of the overall maintenance process.

References

References
1.
Visser
,
W. P. J.
,
Kogenhop
,
O.
, and
Oostveen
,
M.
,
2006
, “
A Generic Approach for Gas Turbine Adaptive Modeling,
,”
ASME J. Eng. Gas Turb. Power
,
128
(1), pp.
13
19
.10.1115/1.1995770
2.
Verbist
,
M. L.
,
Visser
,
W. P. J
,
van Buijtenen
,
J. P.
, and
Duivis
,
R.
,
2011
, “
Gas Path Analysis on KLM In-Flight Engine Data
,”
ASME
Paper No. GT2011-45625. 10.1115/GT2011-45625
3.
Kurzke
,
J.
,
2005
, “
How to Create a Performance Model of a Gas Turbine From a Limited Amount of Information
,”
ASME
Paper No. GT2005-68536. 10.1115/GT2005-68536
4.
Kurzke
,
J.
,
2008
, “
The Importance of Component Maps for Gas Turbine Performance Simulations
,”
12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
(ISROMAC-12), Honolulu, HI, February 17–22.
5.
Li
,
Y. G.
,
Marinai
,
L.
,
Gatto
,
E. L.
,
Pachidis
,
V.
, and
Piliddis
,
P.
,
2009
, “
Multiple-Point Adaptive Performance Simulation Tuned to Aero Engine Test-Bed Data
,”
J. Propul. Power
,
25
(3), pp.
635
641
.10.2514/1.38823
6.
Pachidis
,
V.
,
Pilidis
,
P.
,
Guindeuil
,
G.
,
Kalfas
,
A.
, and
Templalexis
,
I.
,
2005
, “
A Partially Integrated Approach to Component Zooming Using Computational Fluid Dynamics
,”
ASME
Paper No. GT2005-68457. 10.1115/GT2005-68457
7.
Pachidis
,
V.
,
Pilidis
,
P.
,
Talhouarn
,
F.
,
Kalfas
,
A.
, and
Templalexis
,
I.
,
2006
, “
A Fully Integrated Approach to Component Zooming Using Computational Fluid Dynamics
,”
ASME J. Eng. Gas Turb. Power
,
128
(3), pp.
579
584
.10.1115/1.2135815
8.
Pachidis
,
V.
Pilidis
,
P.
Marinai
,
L.
Templalexis
I.
,
2007
, “
Towards a Full Two Dimensional Gas Turbine Performance Simulator
,”
Aeronaut. J.
,
111
(1121), pp.
433
-
442
.
9.
Pachidis
,
V.
,
Pilidis
,
P.
,
Texeira
,
J.
, and
Templalexis
,
I.
,
2007
, “
A Comparison of Component Zooming Simulation Strategies Using Streamline Curvature
,”
Proc. IMechE
,
221
(
1
), pp.
1
15
.10.1243/09544100JAERO147
10.
Lytle
,
J. K.
,
1999
, “
The Numerical Propulsion System Simulation: A Multidisciplinary Design System for Aerospace Vehicles
,” NASA/TM–1999-209194.
11.
Veres
J. P.
,
2002
, “
Overview of High-Fidelity Modeling Activities in the Numerical Propulsion System Simulation (NPSS) Project
,” NASA/TM–2002-211351.
12.
Hall
,
E. J.
,
Lynn
,
S. R.
,
Heidegger
,
N. J.
, and
Delany
,
R. A.
,
1998
, “
Energy Efficient Engine Low Pressure Subsystem Flow Analysis
,” NASA/CR–1998-206597.
13.
Hall
,
E. J.
,
Delany
,
R. A.
,
Lynn
,
S. R.
, and
Veres
,
J. P.
,
1998
, “
Low Pressure Subsystem Flow Analysis
,” NASA/TM–1998-208402.
14.
Reed
,
J. A.
,
Turner
,
M. G.
,
Norris
,
A.
, and
Veres
,
J. P.
,
2003
, “
Towards an Automated Full-Turbofan Engine Numerical Simulation
,” NASA/TM–2003-212494.
15.
Turner
,
M. G.
,
Ryder
,
R.
,
Reed
,
J. A.
, and
Veres
,
J. P.
,
2004
, “
Multi-Fidelity Simulation of a Turbofan Engine With Results Zoomed Into Mini-Maps for a Zero-D Cycle Simulation
,”
ASME
Paper No. GT2004-53956. 10.1115/GT2004-53956
16.
Dubitsky
,
O.
,
Wiedermann
,
A.
,
Nakano
,
T.
, and
Perera
,
J.
,
2003
, “
The Reduced Order Through-Flow Modeling of Axial Turbomachinery
,” International Gas Turbine Congress (IGTC2003Tokyo), Tokyo, Japan, November 2–7, Paper No. TS-052.
17.
Koch
,
C. C.
, and
Smith
L. H.
,
1976
, “
Loss Sources and Magnitudes in Axial-Flow Compressors
,”
ASME J. Eng. Gas Turb. Power
,
98
(3), pp.
411
424
.10.1115/1.3446202
18.
Koch
,
C. C.
,
1981
, “
Stalling Pressure Rise Capability of Axial Flow Compressor Stages
,”
ASME J. Eng. Gas Turb. Power
,
103
(4), pp.
645
656
.10.1115/1.3230787
19.
Ainley
,
D. G.
, and
Mathieson
,
G. C. R.
,
1951
, “
A Method of Performance Estimation for Axial-Flow Turbines
,” British Aeronautical Research Council, London, Paper No. R&M 2974.
20.
Dunham
,
J.
, and
Came
,
P. M.
1970
, “
Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction
,”
ASME J. Eng. Gas Turb. Power
,
92
(3), pp.
252
256
.10.1115/1.3445349
21.
Kacker
,
S. C.
, and
Okapuu
,
U.
,
1982
, “
A Mean Line Prediction Method for Axial Flow Turbine Efficiency
,”
ASME J. Eng. Gas Turb. Power
,
104
(1), pp.
111
119
.10.1115/1.3227240
22.
Li
,
Y. G.
,
2002
, “
Performance-Analysis-Based Gas Turbine Diagnostics: A Review
,”
Proc. IMechE J. Power Energy
,
216
(5), pp.
363
377
.10.1243/095765002320877856
23.
Bauer
,
M.
,
2005
, “
Modulares Leistungsberechnungsverfahren zur automatisierten modellbasierten Leistungsanalyse
”. Promotion Institut für Luftfahrtantriebe der Universität Stuttgart, Stuttgart, Germany.
24.
Bauer
,
M.
, and
Staudacher
,
S.
,
2008
, “
Fully Automated Model-Based Performance Analysis Procedure for On-Line and Off-Line Applications
”.
ASME J. Turbomach.
,
130
(1), p. 011007.10.1115/1.2720875
You do not currently have access to this content.