The proper orthogonal decomposition (POD) method is applied to analyze the particle image velocimetry (PIV) measurement data and large eddy simulation (LES) result from an in-cylinder turbulence flow field in a four-valve direct injection spark ignition (DISI) engine. The instantaneous flow fields are decomposed into four parts, namely, mean field, coherent field, transition field and turbulent field, respectively, by the POD quadruple decomposition. The filtering method for separating the four flow parts is based on examining the relevance and correlations between different flow fields reconstructed with various POD mode numbers, and the corresponding reconstructed fields have been verified by their statistical properties. Then, the in-cylinder flow evolution and cycle-to-cycle variations (CCV) are studied separately upon the four field parts. Results indicate that each one of the four field parts exhibits its own flow characteristics and has close connection with others. Furthermore, the mean part contains the most kinetic energy of the entire flow field and represents the bulk flow of the original in-cylinder velocity field; the CCV in this part could almost be neglected, while the coherent field part contains larger scale structures and the most fluctuating energy, and possesses the highest CCV level among the four parts.

References

References
1.
Heywood
,
J.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
2.
Hill
,
P.
, and
Zhang
,
D.
,
1994
, “
The Effects of Swirl and Tumble on Combustion in Spark-Ignition Engines
,”
Prog. Energy Combust. Sci.
,
20
(
5
), pp.
373
429
.10.1016/0360-1285(94)90010-8
3.
Xie
,
M.
,
2005
, “
Computational Combustion for Internal Combustion Engine
,” Dalian University of Technology Publishing House, Dalian, China.
4.
Ozdor
,
N.
,
Dulger
,
M.
, and
Sher
,
E.
,
1994
, “
Cyclic Variability in Spark Ignition Engines—A Literature Survey
,”
SAE
Technical Paper No. 940987.10.4271/940987
5.
Lumley
,
J.
,
1967
, “
The Structure of Inhomogeneous Turbulent Flows
,”
Atmospheric Turbulence and Radio Wave Propagation
,
Nauka
,
Moscow, Russia
, pp.
166
178
.
6.
Lumley
,
J.
,
1981
, “
Coherent Structures in Turbulence
,”
Symposium on Transition and Turbulence in Fluids
, Madison, WI, October 13-15.
7.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
,
1998
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University
,
Cambridge, UK
.
8.
Payne
,
F.
, and
Lumley
,
J.
,
1967
, “
Large Eddy Structure of the Turbulent Wake Behind a Circular Cylinder
,”
Phys. Fluids
,
10
(
9
), pp.
194
196
.10.1063/1.1762445
9.
Bakewell
, Jr.,
H. P.
, and
Lumley
,
J. L.
,
1967
, “
Viscous Sublayer and Adjacent Wall Region in Turbulent Pipe Flow
,”
Phys. Fluids
,
10
(
9
), pp.
1880
1889
.10.1063/1.1762382
10.
Hilberg
,
D.
,
Lazik
,
W.
, and
Fiedler
,
H.
,
1994
, “
The Application of Classical Pod and Snapshot Pod in a Turbulent Shear Layer With Periodic Structures
,”
Appl. Sci. Res.
,
53
(
3
), pp.
283
290
.10.1007/BF00849105
11.
Erdil
,
A.
,
Kodal
,
A.
, and
Aydin
,
K.
,
2002
, “
Decomposition of Turbulent Velocity Fields in an SI Engine
,”
Flow, Turbul. Combust.
,
68
(
2
), pp.
91
110
.10.1023/A:1020467008591
12.
Raposo
,
J.
,
Hentschel
,
W.
, and
Merzkirch
,
W.
,
2000
, “
Analysis of the Dynamical Behavior of Coherent Structures in In-Cylinder Flows of Internal Combustion Engines
,”
10th International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal, July 10-13.
13.
Borée
,
J.
,
Marc
,
D.
,
Bazile
,
R.
, and
Lecordier
,
B.
,
1999
, “
On the Behavior of a Large Scale Tumbling Vortex Flow Submitted to Compression
,”
Proc. ESAIM
7
(
6
), pp.
56
65
.10.1051/proc:1999006
14.
Borée
,
J.
,
Maurel
,
S.
, and
Bazile
,
R.
,
2002
, “
Disruption of a Compressed Vortex
,”
Phys. Fluids
,
14
(
7
), pp.
2543
2556
.10.1063/1.1472505
15.
Cosadia
,
I.
,
Borée
,
J.
,
Charnay
,
G.
, and
Dumont
,
P.
,
2006
, “
Cyclic Variations of the Swirling Flow in a Diesel Transparent Engine
,”
Exp. Fluids
,
41
(
1
), pp.
115
134
.10.1007/s00348-006-0163-4
16.
Cosadia
,
I.
,
Borée
,
J.
, and
Dumont
,
P.
,
2007
, “
Coupling Time-Resolved PIV Flow-Fields and Phase-Invariant Proper Orthogonal Decomposition for the Description of the Parameters Space in a Transparent Diesel Engine
,”
Exp. Fluids
,
43
(
2
), pp.
357
370
.10.1007/s00348-007-0338-7
17.
Druault
,
P.
,
Guibert
,
P.
, and
Alizon
,
F.
,
2005
, “
Use of Proper Orthogonal Decomposition for Time Interpolation From PIV Data
,”
Exp. Fluids
,
39
(
6
), pp.
1009
1023
.10.1007/s00348-005-0035-3
18.
Kapitza
,
L.
,
Imberdis
,
O.
,
Bensler
,
H.
,
Willand
,
J.
, and
Thévenin
,
D.
,
2010
, “
An Experimental Analysis of the Turbulent Structures Generated by the Intake Port of a DISI-Engine
,”
Exp. Fluids
,
48
(
2
), pp.
265
280
.10.1007/s00348-009-0736-0
19.
Fogleman
,
M. A.
,
2005
, “
Low-Dimensional Models of Internal Combustion Engine Flows Using the Proper Orthogonal Decomposition
,”
Ph.D.
thesis,
Cornell University, Ithaca, NY
.
20.
Fogleman
,
M. A.
,
Lumley
,
J.
,
Rempfer
,
D.
, and
Haworth
,
D.
,
2004
, “
Application of the Proper Orthogonal Decomposition to Datasets of Internal Combustion Engine Flows
,”
J. Turbul.
,
5
, p.
N23
.10.1088/1468-5248/5/1/023
21.
Liu
,
K.
, and
Haworth
,
D. C.
,
2011
, “
Development and Assessment of Pod for Analysis of Turbulent Flow in Piston Engines
,”
SAE
Technical Paper No. 2011-01-0830.10.4271/2011-01-0830
22.
Roudnitzky
,
S.
,
Druault
,
P.
, and
Guibert
,
P.
,
2006
, “
Proper Orthogonal Decomposition of In-Cylinder Engine Flow Into Mean Component, Coherent Structures and Random Gaussian Fluctuations
,”
J. Turbul.
,
7
, p.
70
.10.1080/14685240600806264
23.
Druault
,
P.
,
Delville
,
J.
, and
Bonnet
,
J. P.
,
2005
, “
Proper Orthogonal Decomposition of the Mixing Layer Flow Into Coherent Structures and Turbulent Gaussian Fluctuations
,”
C. R. Mec.
,
333
(
11
), pp.
824
829
.10.1016/j.crme.2005.10.001
24.
Liu
,
D.
,
2008
, “
Analysis of the In-Cylinder Flow and Performance in SI Engine With Variable Valve Actuation
,”
Ph.D.
thesis,
Tianjin University, Tianjin, China
.
25.
Wang
,
G.
,
2010
, “
Characterization of In-Cylinder Flow in a DISI Engine With Variable Valve Lift
,” Ph.D. thesis, Tianjin University, Tianjin,
China.
26.
Wang
,
T.
,
Liu
,
D.
,
Zhang
,
X.
,
Zhang
,
D.
,
Liu
,
S.
, and
Zhao
,
H.
,
2008
, “
Study of the In-Cylinder Flow Characteristics of Spark Ignition Engine Under Variable Valve Lift
,”
Trans. CSICE
,
26
(
5
), pp.
420
428
.10.3321%2fj.issn%3a1000-0909.2008.05.006
27.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University
,
Cambridge, UK
.
28.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
, pp.
35
58
.10.1088/1367-2630/6/1/035
29.
Celik
,
I.
,
Yavuz
,
I.
, and
Smirnov
,
A.
,
2001
, “
Large Eddy Simulations of In-Cylinder Turbulence for Internal Combustion Engines: A Review
,”
Int. J. Engine Res.
,
2
(
2
), pp.
119
148
.10.1243/1468087011545389
30.
German
,
M.
,
1992
, “
Turbulence: The Filtering Approach
,”
J. Fluid Mech.
,
238
, pp.
325
336
.10.1017/S0022112092001733
31.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
,
4
(
3
), pp.
633
635
.10.1063/1.858280
32.
Amsden
,
A. A.
,
1997
, “
KIVA-3V: A Block-Structured Kiva Program for Engines With Vertical or Canted Valves
,”
Los Alamos National Laboratory
,
Los Alamos, NM
, Technical Report No. LA-13313-MS.
33.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.10.1146/annurev.fl.25.010193.002543
34.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures. Part I: Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.
35.
Manhart
,
M.
, and
Wengle
,
H.
,
1993
, “
A Spatiotemporal Decomposition of a Fully Inhomogeneous Turbulent Flow Field
,”
Theor. Comput. Fluid Dyn.
,
5
(
4
), pp.
223
242
.10.1007/BF00271660
36.
Vu
,
T. T.
, and
Guibert
,
P.
,
2012
, “
Proper Orthogonal Decomposition Analysis for Cycle-to-Cycle Variations of Engine Flow. Effect of a Control Device in an Inlet Pipe
,”
Exp. Fluids
,
52
(
6
), pp.
1519
1532
.10.1007/s00348-012-1268-6
37.
Pinsky
,
M.
,
Shapiro
,
M.
,
Khain
,
A.
, and
Wirzberger
,
H.
,
2004
, “
A Statistical Model of Strains in Homogeneous and Isotropic Turbulence
,”
Physica D: Nonlinear Phenomena
,
191
(
3
), pp.
297
313
.10.1016/j.physd.2003.12.008
38.
Alfonsi
,
G.
,
2006
, “
Coherent Structures of Turbulence: Methods of Education and Results
,”
ASME Appl. Mech. Rev.
,
59
(
6
), pp.
307
323
.10.1115/1.2345370
39.
Haller
,
G.
,
2005
, “
An Objective Definition of a Vortex
,”
J. Fluid Mech.
,
525
, pp.
1
26
.10.1017/S0022112004002526
40.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Stream, and Convergence Zones in Turbulent Flows
,” Center for Turbulence Research Report, Stanford, CA, Report No. CTR-S88, pp.
193
208
.
You do not currently have access to this content.