A state-of-the-art spray modeling methodology, recently presented by Senecal et al. (2012, “Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” Proceedings of the ASME 2012 Internal Combustion Engine Division Fall Technical Conference, Vancouver, Canada, Paper No. ICEF2012-92043; 2013 “An Investigation of Grid Convergence for Spray Simulations using an LES Turbulence Model,” Paper No. SAE 2013-01-1083) is applied to large eddy simulations (LES) of vaporizing sprays. Simulations of noncombusting Spray A (n-dodecane fuel) from the engine combustion network are performed. An adaptive mesh refinement (AMR) cell size of 0.0625 mm is utilized based on the accuracy/runtime tradeoff demonstrated by Senecal et al. (2013, “An Investigation of Grid Convergence for Spray Simulations using an LES Turbulence Model,” Paper No. SAE 2013-01-1083). In that work, it was shown that grid convergence of key parameters for nonevaporating and evaporating sprays was achieved for cell sizes between 0.0625 and 0.125 mm using the dynamic structure LES model. The current work presents an extended and more thorough investigation of Spray A using multidimensional spray modeling and the dynamic structure LES model. Twenty different realizations are simulated by changing the random number seed used in the spray submodels. Multirealization (ensemble) averaging is shown to be necessary when comparing to local spray measurements of quantities such as mixture fraction and gas-phase velocity. Through a detailed analysis, recommendations are made regarding the minimum number of LES realizations required for accurate prediction of diesel sprays. Finally, the effect of a spray primary breakup model constant on the results is assessed.

References

References
1.
Som
,
S.
,
Longman
,
D. E.
,
Luo
,
Z.
,
Plomer
,
M.
,
Lu
,
T.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2012
, “
Simulating Flame Lift-Off Characteristics of Diesel and Biodiesel Fuels Using Detailed Chemical-Kinetic Mechanisms and Large Eddy Simulation Turbulence Model
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032204
.10.1115/1.4007216
2.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Richards
,
K.
, and
Som
,
S.
,
2013
, “
An Investigation of Grid Convergence for Spray Simulations Using an LES Turbulence Model
,” Paper No.
SAE
2013-01-1083.10.4271/2013-01-1083
3.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Richards
,
K.
, and
Som
,
S.
,
2012
, “
Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations
,”
ASME
Paper No. ICEF2012-92043.10.1115/ICEF2012-92043
4.
Pomraning
,
E.
, and
Rutland
,
C. J.
,
2002
, “
Dynamic One-Equation Nonviscosity Large-Eddy Simulation Model
,”
AIAA J.
,
40
(
4
), pp.
689–701
.10.2514/2.1701
5.
Pomraning
,
E.
,
2000
, “
Development of Large Eddy Simulation Turbulence Models
,” Ph.D. thesis, University of Wisconsin-Madison, Madison, WI.
6.
Habchi
,
C.
, and
Bruneaux
,
G.
,
2012
, “
LES and Experimental Investigation of Diesel Sprays
,”
12th Triennial International Conference on Liquid Atomization and Spray Systems
, (ICLASS 2012), Heidelberg, Germany, September 2–6.
7.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2012
, “
CONVERGE (Version 1.4.1) Manual
,”
Convergent Science, Inc.
,
Middleton, WI
.
8.
Senecal
,
P. K.
,
Richards
,
K. J.
,
Pomraning
,
E.
,
Yang
,
T.
,
Dai
,
M. Z.
,
McDavid
,
R. M.
,
Patterson
,
M. A.
,
Hou
,
S.
, and
Shethaji
,
T.
,
2007
, “
A New Parallel Cut-Cell Cartesian CFD Code for Rapid Grid Generation Applied to In-Cylinder Diesel Engine Simulations
,” Paper No.
SAE
2007-01-0159.10.4271/2007-01-0159
9.
Leonard
,
A.
,
1974
, “
Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows
,”
Adv. Geophys. A
,
18
(
A
), pp.
237
248
.10.1016/S0065-2687(08)60464-1
10.
Yeo
,
W. K.
,
1987
, “
A Generalized High Pass/Low Pass Averaging Procedure for Deriving and Solving Turbulent Flow Equations
,” Ph.D. thesis, The Ohio State University, Columbus, OH.
11.
Rhie
,
C. M.
, and
Chow
,
W. L.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
(
11
), pp.
1525
1532
.10.2514/3.8284
12.
Issa
,
R. I.
,
1985
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40–65
.10.1016/0021-9991(86)90099-9
13.
Reitz
,
R. D.
, and
Diwakar
,
R.
,
1987
, “
Structure of High-Pressure Fuel Sprays
,”
SAE
Paper No. 870598.10.4271/870598
14.
Schmidt
,
D. P.
, and
Rutland
,
C. J.
,
2000
, “
A New Droplet Collision Algorithm
,”
J. Comput. Phys.
,
164
(
1
), pp.
62
80
.10.1006/jcph.2000.6568
15.
Post
,
S. L.
, and
Abraham
,
J.
,
2002
, “
Modeling the Outcome of Drop-Drop Collisions in Diesel Sprays
,”
Int. J. Multiphase Flow
,
28
(
6
), pp.
997
1019
.10.1016/S0301-9322(02)00007-1
16.
Liu
,
A. B.
,
Mather
,
D. K.
, and
Reitz
,
R. D.
,
1993
, “
Modeling the Effects of Drop Drag and Breakup on Fuel Sprays
,”
SAE
Paper No. 930072.10.4271/930072
17.
Amsden
,
A. A.
,
O'Rourke
,
P. J.
, and
Butler
,
T. D.
,
1989
, “
KIVA-II: A Computer Program for Chemically Reactive Flows With Sprays
,” Los Alamos National Laboratory, Los Alamos, NM, Report LA-11560-MS.
18.
Sandia, 2014, “Engine Combustion Network,” Sandia National Laboratories, Livermore, CA, http://www.sandia.gov/ecn/
19.
Pickett
,
L. M.
,
Genzale
,
C. L.
,
Bruneaux
,
G.
,
Malbec
,
L. M.
,
Hermant
,
L.
,
Christiansen
,
C.
, and
Schramm
,
J.
,
2010
, “
Comparison of Diesel Spray Combustion in Different High-Temperature, High-Pressure Facilities
,”
SAE
Paper No. 2010-01-2106.10.4271/2010-01-2106
20.
Pickett
,
L. M.
,
Manin
,
J.
,
Genzale
,
C. L.
,
Siebers
,
D. L.
,
Musculus
,
M. P. B.
, and
Idicheria
,
C. A.
,
2011
, “
Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction
,”
SAE
Paper No. 2011-01-0686.10.4271/2011-01-0686
21.
ECN1 Proceedings, 2011, Sandia National Laboratories, Livermore, CA, http://www.sandia.gov/ecn/workshop/ECN1.php
22.
Meijer
,
M.
,
Malbec
,
L- M.
,
Bruneaux
,
G.
, and
Somers
,
L. M. T.
,
2012
, “
Engine Combustion Network: ‘Spray A’ Basic Measurements and Advanced Diagnostics
,” 12th Triennial International Conference on Liquid Atomization and Spray Systems (ICLASS 2012), Heidelberg, Germany, September 2–6.
You do not currently have access to this content.