This paper investigates the application of fault diagnosis (FD) approach for improving performance of compressors within exact operating point determination. Detecting of sensor fault or failure status is more important in the compressor for safety-critical application. No work has previously been reported on the use of the FD system within a compressor surge-suppressing system. Therefore, the main contribution of this paper is presenting different and complementary techniques for surge-suppressing studies via sensor FD. By data acquisition from a nonlinear Moore–Greitzer model, a neural network (NN) and innovation complex decision logic provide residual generation and evaluation blocks in an analytical redundancy FD system, respectively. The proposed FD deals with the most-common sensor faults and failures in seven different scenarios according to their nature, such as bias, cutoff, loss of efficiency, and freeze.

References

References
1.
Zalloi
,
M. M.
,
2008
,
Natural Gas Transmission by High Technologies
,
National Iranian Gas Company
, Tehran, Iran.
2.
Bloch
,
H. P.
,
2006
,
Application Guide to Compressor Technology
,
2nd ed.
,
Wiley
,
New York
.
3.
Bloch
,
H. P.
,
2006
,
Compressors and Modern Applications
,
2nd ed.
,
Wiley
,
New York
, pp.
115
127
.
4.
Rasmussen
,
P. C.
, and
Kurz
,
R.
,
2009
, “
Centrifugal Compressor Applications- Upstream and Midstream
,”
38th Turbo Machinery Symposium
, Houston, TX, September 14–17.
5.
Helivort
,
J. V.
,
2007
, “
Centrifugal Compressor Surge Modeling and Identification for Control
,” Ph.D. thesis, Mechanical Engineering Control Systems Technology Group, Eindhoven University of Technology, Eindhoven, Netherlands.
6.
Bohagen
,
B.
,
2007
, “
Active Surge Control of Centrifugal Compression Systems
,” Ph.D. thesis, Faculty of Informational Technology, Mathematics and Electrical Engineering, Department of Engineering Cybeernetics, Norwegian University of Science and Technology, Trondheim, Norway.
7.
Reddy
,
B.
,
2011
, “
Compressors Used in Oil and Gas Industry
,” Dresser-Rand Inc., Houston, TX, technical report.
8.
Gatewood
,
J.
,
2012
, “
Future Compressor Station Technologies and Applications
,”
Gas/Electric Partnership Conference, Houston, TX, February 8–9
.
9.
Qayyum Khan
,
A.
,
2010
, “
Observer-Based Fault Detection in Nonlinear Systems
,” Ph.D. thesis, Institute of Automatic Control and Complex Systems (AKS), University of Duisburg-Essen, Duisberg, Germany.
10.
Isermann
,
R.
,
2006
,
Fault-Diagnosis Systems
,
Springer
,
New York
, pp.
13
30
.
11.
Dong
,
J.
,
2009
Data Driven Fault Tolerant Control: A Subspace Approach
,” Ph.D. thesis, Mechanical, Maritime and Materials Engineering Department, Delft Center for Systems and Control, Delft University, Delft, Netherlands.
12.
Patton
,
R. J.
,
Frank
,
P. M.
, and
Clark
,
R. N.
,
2000
,
Issues in Fault Diagnosis for Dynamic Systems
,
Springer
,
New York
.
13.
Ding
,
S. X.
,
2008
,
Model-Based Fault Diagnosis Techniques
,
Springer
,
New York
.
14.
Niazi
,
S.
,
2002
, “
Numerical Simulation of Rotating Stall and Surge Alleviation in Axial Compressors
,” Ph.D. thesis, Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA.
15.
Spakoszky
,
Z. S.
,
2004
, “
Backward Traveling Rotating Stall Waves in Centrifugal Compressors
,”
ASME J. Turbomachinery
,
126
, pp.
1
12
.10.1115/1.1643382
16.
Gravdahl
,
J. T.
, and
Egeland
,
O.
,
1999
,
Compressor Surge and Rotating Stall: Modeling and Control
,
Springer
,
New York
.
17.
Bohagen
,
B.
, and
Gravdahl
,
J. T.
,
2005
, “
Active Control of Compression Systems Using Drive Torque: A Backstepping Approach
,”
44th IEEE Conference on Decision and Control
,
Seville, Spain
, December 12–15, pp.
2493
2498
.10.11090/CDC.2005.1582537
18.
Gravdahl
,
J. T.
,
Egeland
,
O.
, and
Vatland
,
S. O.
,
2002
, “
Drive Torque Actuation in Active Surge Control of Centrifugal Compressors
,”
Automatica
,
38
(11), pp.
1881
1893
.10.1016/S0005-1098(02)00113-9
19.
Simon
,
J. S.
,
Valavan
, I
. L.
,
Epstein
,
A. H.
, and
Greitzer
,
E. M.
,
1993
, “
Valuation of Approaches to Active Compressor Surge Stabilization
,”
ASME J. Turbomachinery
,
115
(1), pp.
57
67
.10.1115/1.2929218
20.
Van de Wal
,
M.
,
Willems
,
F.
, and
De Jager
,
B.
,
2002
, “
Selection of Actuators and Sensors for Active Surge Control
,”
J. Propul. Power
,
18
(1), pp.
84
92
.10.2514/2.5901
21.
Zanloi
,
S. M.
,
Astofli
,
G.
, and
Barboni
,
L.
,
2010
, “
Application of Fault Diagnosis Techniques for a Multishaft Centrifugal Compressor
,”
18th Mediterranean Conference on Control and Automation
(
MED
), Marrakech, Morocco, June 23–25, pp.
64
69
.10.1109/MED.2010.5547615
22.
Sarkar
,
S.
,
Jin
,
X.
, and
Ray
,
A.
,
2011
, “
Data-Driven Fault Detection in Aircraft Engines With Noisy Sensor Measurements
,”
ASME J. Eng. Gas Turbines Power
,
133
(8), p.
081602
.10.1115/1.4002877
23.
Vargas
,
J. A. R.
,
Hemerly
,
E. M.
, and
Villarreal
,
R. L.
,
2012
, “
Stability Analysis of a Neuro-Identification Scheme With Asymptotic Convergence
,”
Int. J. Artif. Intell. Appl.
,
3
(
4
), pp.
35
50
.10.1155/2010/314172
24.
Korkobi
,
T.
,
Djemel
,
M.
, and
Chtourou
,
M.
,
2008
, “
Stability Analysis of Neural Networks-Based System Identification
,”
Model. Simul. Eng.
,
2008
, p.
343940
.10.1155/2008/343940
25.
Yerramalla
,
S.
,
2005
, “
Stability Monitoring and Analysis of Online Learning Neural Networks
,” Ph.D. thesis, West Virginia University, Morgantown, WV.
26.
Greitzer
,
E. M.
,
1997
, “
Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model
,”
ASME J. Eng. Gas Turbines Power
,
98
(2), pp.
190
198
.10.1115/1.3446138
27.
Greitzer
,
E. M.
,
1997
, “
Surge and Rotating Stall in Axial Flow Compressors—Part II: Experimental Results and Comparison With Theory
,”
ASME J. Eng. Gas Turbines Power
,
98
(2), pp.
199
217
.10.1115/1.3446139
28.
Alavinia
,
S. M.
,
Sadrnia
,
M. A.
,
Khosrowjerdi
,
M. J.
, and
Fateh
,
M. M.
,
2014
, “
Robust Fault Detection to Determine Compressor Surge Point Via Dynamic Neural Network-Based Subspace Identification Technique
,”
ASME J. Eng. Gas Turbines Power
,
136
(8), p.
082602
.10.1115/1.4026610
29.
Hahn
,
A.
,
2000
, “
Modeling and Control of Solid Oxide Fuel Cell–Gas Turbine Power Plant Systems
,” M.Sc. thesis, School of Engineering, University of Pittsburgh, Pittsburgh, PA.
30.
Carlos da Silva
,
J.
,
Saxena
,
A.
,
Balaban
,
E.
, and
Gobel
,
K.
,
2012
, “
A Knowledge-Based System Approach for Sensor Fault Modeling, Detection and Mitigation
,”
Expert Syst. Appl.
,
39
(12), pp.
10977
10989
.10.1016/j.eswa.2012.03.026
31.
Ding
,
S. X.
,
2012
, “
Data-Driven Design of Model-Based Fault Diagnosis Systems
,”
8th IFAC Symposium on Advanced Control of Chemical Processes, The International Federation of Automatic Control
,
Singapore
, July 10–13.
32.
Venkatasubramanian
,
V.
,
Raghunathan Rengaswamy
,
R.
,
Kavuri
,
S. N.
, and
Yin
,
K.
,
2003
, “
A Review of Process Fault Detection and Diagnosis: Part III: Process History Based Methods
,”
Comput. Chem. Eng.
,
27
(3), pp.
327
346
.10.1016/S0098-1354(02)00162-X
33.
Subbaraj
,
P.
, and
Kannapiran
,
B.
,
2010
, “
Artificial Neural Network Approach for Fault Detection in Pneumatic Valve in Cooler Water Spray System
,”
Int. J. Comput. Appl.
,
9
(7), pp.
43
52
.10.5120/1395-1881
34.
Sabo
,
D.
, and
Yu
,
X.
,
2008
, “
Neural Network Dimension Selection for Dynamical System Identification
,”
17th IEEE International Conference on Control Applications
(
CCA 2008
),
San Antonio, TX
, September 3–5. 10.1109/CCA.2008.4629704
35.
Lakhal
,
A. N.
,
Tlili
,
A. S.
, and
Braiek
,
B.
,
2010
, “
Neural Network Observer for Nonlinear Systems Application to Induction Motors
,”
Int. J. Control Automat.
,
3
(
1
),
1
16
.
You do not currently have access to this content.