The integrated control of a homogenous charge compression ignition (HCCI) combustion phasing, load, and exhaust aftertreatment system is essential for realizing high-efficient HCCI engines, while maintaining low hydrocarbon (HC) and carbon monoxide (CO) emissions. This paper introduces a new approach for integrated HCCI engine control by defining a novel performance index to characterize different HCCI operating regions. The experimental data from a single cylinder engine at 214 operating conditions is used to determine the performance index for a blended fuel HCCI engine. The new performance index is then used to design an optimum reference trajectory for a multi-input multi-output HCCI controller. The optimum trajectory is designed for control of the combustion phasing and indicated mean effective pressure (IMEP), while meeting catalyst light-off requirements for the exhaust aftertreatment system. The designed controller is tested on a previously validated physical HCCI engine model. The simulation results illustrate the successful application of the new approach for controller design of HCCI engines.

References

References
1.
Zhao
,
F.
,
Asmus
,
T.
,
Assanis
,
D. N.
,
Dec
,
J. E.
,
Eng
,
J. A.
, and
Najt
,
P. M.
,
2003
,
Homogeneous Charge Compression Ignition (HCCI) Engines
,
Society of Automotive Engineers
,
Warrendale
, PA.
2.
Williams
,
S.
,
Hu
,
L.
,
Nakazono
,
T.
,
Ohtsubo
,
H.
, and
Uchida
,
M.
,
2008
, “
Oxidation Catalysts for Natural Gas Engine Operating Under HCCI or SI Conditions
,”
SAE
Technical Paper No. 2008-01-080710.4271/2008-01-0807.
3.
Shahbakhti
,
M.
,
Ghazimirsaied
,
A.
, and
Koch
,
C. R.
,
2010
, “
Experimental Study of Exhaust Temperature Variation in a Homogeneous Charge Compression Ignition Engine
,”
Proc.Inst. Mech. Eng., Part D: J. Automob. Eng.
,
224
(
9
), pp.
1177
1197
.10.1243/09544070JAUTO1473
4.
Xingcai
,
L.
,
Yuchum
,
H.
,
Libin
,
J
,
.
Linlin
,
Z.
, and
Zhen
,
H.
,
2006
, “
Heat Release Analysis on Combustion and Parametric Study on Emissions of HCCI Engines Fueled With 2-Propanol/n-Heptane Blend Fuels
,”
Energy Fuels
,
20
(
5
), pp.
1870
1878
.10.1021/ef0601263
5.
Kalghatgi
,
G. T.
and
Head
,
R. A.
,
2006
, “
Combustion Limits and Efficiency in a Homogeneous Charge Compression Ignition Engine
,”
Int. J. Engine Res.
,
7
(
3
), pp.
215
236
.10.1243/14680874JER04605
6.
Shahbakhti
,
M.
and
Koch
,
C. R.
,
2008
, “
Characterizing the Cyclic Variability of Ignition Timing in an HCCI Engine Fueled With n-Heptane/iso-Octane Blend Fuels
,”
Int. J. Engine Res.
,
9
(
9
), pp.
361
397
.10.1243/14680874JER01408
7.
Xu
,
H. M.
,
Wyszynski
,
M. L.
,
Megaritis
,
A.
,
Yap
,
D.
,
Wilson
,
T.
,
Qiao
,
J.
,
Richardson
,
S.
,
Golunski
,
S.
, and
Peucheret
,
S.
,
2007
, “
Research on Expansion of Operating Windows of Controlled Homogeneous Auto-Ignition Engines
,”
Int. J. Engine Res.
,
8
(
1
), pp.
29
40
.10.1243/14680874JER01106
8.
Shahbakhti
,
M.
,
Ghazimirsaied
,
A.
, and
Koch
,
C. R.
,
2011
, “
Modeling Ranges of Cyclic Variability for HCCI Ignition Timing Control
,”
ASME
Paper No. DSCC2011-611810.1115/DSCC2011-6118.
9.
Lu
,
X.
,
Chen
,
W.
,
Hou
,
Y.
, and
Huang
,
Z.
,
2005
, “
Study on the Ignition, Combustion and Emissions of HCCI Combustion Engines Fueled With Primary Reference Fuels
,”
SAE
Technical Paper No. 2005-01-015510.4271/2005-01-0155.
10.
Widd
,
A.
,
Ekholm
,
K.
,
Tunestål
,
P.
, and
Johansson
,
R.
,
2012
, “
Physics-Based Model Predictive Control of HCCI Combustion Phasing Using Fast Thermal Management and VVA
,”
IEEE Trans. Control Syst. Technol.
,
20
(
3
), pp.
688
699
.10.1109/TCST.2011.2128871
11.
Ravi
,
N.
,
Liao
,
H. H.
,
Jungkunz
,
A. F.
,
Widd
,
A.
, and
Gerdes
,
J. C.
,
2012
, “
Model Predictive Control of HCCI Using Variable Valve Actuation and Fuel Injection
,”
J. Control Eng. Pract.
,
20
(
4
), pp.
421
430
.10.1016/j.conengprac.2011.12.002
12.
Chiang
,
C. J.
,
Stefanopoulou
,
A. G.
, and
Jankovic
,
M.
,
2007
, “
Nonlinear Observer-Based Control of Load Transitions in Homogeneous Charge Compression Ignition Engines
,”
IEEE Trans. Control Syst. Technol.
,
15
(
3
), pp.
438
448
.10.1109/TCST.2007.894637
13.
Chiang
,
C. J.
,
Huang
,
C. C.
, and
Jankovic
,
M.
,
2010
, “
Discrete-Time Cross-Term Forwarding Design of Robust Controllers for HCCI Engines
,”
American Control Conference (ACC)
, Baltimore, MD, June 30-July 2, pp.
2218
2223
.
14.
Strandh
,
P.
,
Bengtsson
,
J.
,
Johansson
,
R.
,
Tunestål
,
P.
, and
Johansson
,
B.
,
2005
, “
Variable Valve Actuation for Timing Control of a HCCI Engine
,”
SAE
Technical Paper No. 2005-01-01470.4271/2005-01-0147.
15.
Olsson
,
J.-O.
,
Tunestål
,
P.
, and
Johansson
,
B.
,
2001
, “
Closed-Loop Control of an HCCI Engine
,”
SAE
Technical Paper No. 2001-01-103110.4271/2001-01-1031.
16.
Audet
,
A.
and
Koch
,
C. R.
,
2009
, “
Actuator Comparison for Closed Loop Control of HCCI Combustion Timing
,”
SAE
Technical Paper No. 2009-01-113510.4271/2009-01-1135.
17.
Bidarvatan
,
M.
,
Shahbakhti
,
M.
, and
Jazayeri
,
S. A.
,
2012
, “
Model-Based Control of Combustion Phasing in an HCCI Engine
,”
SAE Int. J. Engines
,
5
(
3
), pp.
1163
1176
10.4271/2012-01-1137.
18.
Ravi
,
N.
,
Roelle
,
M. J.
,
Liao
,
H.-H.
,
Jungkunz
,
A. F.
,
Chang
,
C. F.
,
Park
,
S.
, and
Gerdes
,
J. C.
,
2010
, “
Model-Based Control of HCCI Engines Using Exhaust Recompression
,”
IEEE Trans. Control Syst. Technol.
,
18
(
6
), pp.
1289
1302
10.1109/TCST.2009.2036599.
19.
Haraldsson
,
G.
,
Tunestål
,
P.
, and
Johansson
,
B.
,
2005
, “
Transient Control of a Multi Cylinder HCCI Engine During a Drive Cycle
,”
SAE
Technical Paper No. 2005-01-015310.4271/2005-01-0153.
20.
Shaver
,
G. M.
,
Gerdes
,
J. C.
, and
Roelle
,
M. J.
,
2009
, “
Physics-Based Modeling and Control of Residual-Affected HCCI Engines
,”
ASME J. Dyn. Syst., Meas., Control
,
131
(
2
), p. 021002.10.1115/1.3023125
21.
Shaver
,
G. M.
,
Gerdes
,
J. C.
, and
Roelle
,
M. J.
,
2004
, “
Physics-Based Closed Loop Control of Phasing, Peak Pressure and Work Output in HCCI Engines Utilizing Variable Valve Actuation
,”
American Control Conference
, Boston, MA, June 30-July 2, pp.
150
155
.
22.
Bidarvatan
,
M.
,
Shahbakhti
,
M.
,
Jazayeri
,
S. A.
, and
Koch
,
C. R.
,
2014
, “
Cycle-to-Cycle Modeling and Sliding Mode Control of Blended Fuel HCCI Engine
,”
J. Control Eng. Pract.
,
24
, pp.
79
91
.10.1016/j.conengprac.2013.11.008
23.
Bidarvatan
,
M.
and
Shahbakhti
,
M.
,
2013
, “
Two-Input Two-Output Control of Blended Fuel HCCI Engines
,”
SAE
Technical Paper No. 2013-01-166310.4271/2013-01-1663.
24.
Ravi
,
N.
,
Liao
,
H.-H.
,
Jungkunz
,
A. F.
,
Chang
,
C. F.
,
Song
,
H. H.
, and
Gerdes
,
J. C.
,
2012
, “
Modeling and Control of an Exhaust Recompression HCCI Engine Using Split Injection
,”
ASME J. Dyn. Syst., Meas., Control
,
134
(
1
), p. 011016.10.1115/1.4004787
25.
Tandra
,
V.
and
Srivastava
,
N.
,
2009
, “
Optimal Peak Pressure and Exhaust Temperature Tracking Control for a Two Zone HCCI Engine Model With Mean Burn Duration
,”
SAE
Technical Paper No. 2009-01-113010.4271/2009-01-1130.
26.
Gorzelic
,
P.
,
Hellström
,
E.
,
Stefanopoulou
,
A. G.
, and
Jiang
,
L.
,
2012
, “
Model-Based Feedback Control for an Automated Transfer Out of SI Operation During SI to HCCI Transitions in Gasoline Engines
,”
ASME
Paper No. DSCC2012-8779
10.1115/DSCC2012-8779.
27.
Bengtsson
,
J.
,
Strandh
,
P.
,
Johansson
,
R.
,
Tunesta
,
P.
, and
Johansson
,
B.
,
2007
, “
Hybrid Modeling of Homogeneous Charge Compression Ignition (HCCI) Engine Dynamics—A Survey
,”
Int. J. Control
,
80
(
11
), pp.
1814
1847
.10.1080/00207170701484869
28.
Strandh
,
P.
,
Bengtsson
,
J.
,
Johansson
,
R.
,
Tunestål
,
P.
, and
Johansson
,
B.
,
2004
, “
Cycle-to-Cycle Control of a Dual-Fuel HCCI Engine
,”
SAE
Technical Paper No. 2004-01-094110.4271/2004-01-0941.
29.
Liao
,
H. H.
,
Widd
,
A.
,
Ravi
,
N.
,
Jungkunz
,
A. F.
,
Kang
,
J. M.
, and
Gerdes
,
J. C.,
2013
, “
Control of Recompression HCCI With a Three Region Switching Controller
,”
J. Control Eng. Pract.
,
21
(
2
), pp.
135
145
.10.1016/j.conengprac.2012.09.003
30.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
31.
Ferrari
, V
.
,
Rabinowitz
,
H.
,
Siemund
,
S.
,
Collinq
,
T.
, and
Campbell
,
B.
,
2007
, “
Achieving EURO III and EURO IV With Ultra-Low Precious Metal Loadings
,”
SAE
Technical Paper No. 2007-01-256510.4271/2007-01-2565.
32.
Jean
,
E.
,
Leroy
, V
.
,
Montenegro
,
G.
,
Onorati
,
A.
, and
Laurell
,
M.
,
2007
, “
Impact of Ultra Low Thermal Inertia Manifolds on Emission Performance
,”
SAE
Technical Paper No. 2007-01-093510.4271/2007-01-0935.
33.
Kuboyama
,
T.
,
Moriyoshi
,
Y.
,
Hatamura
,
K.
,
Takanashi
,
J.
,
Urata
,
Y.
, and
Yamada
,
T.
,
2012
, “
A Study of Newly Developed HCCI Engine With Wide Operating Range Equipped With Blowdown Supercharging System
,”
SAE Int. J. Engines
,
5
(
2
), pp.
51
66
10.4271/2011-01-1766.
34.
Sjöberg
,
M.
and
Dec
,
J. E.
,
2009
, “
Influence of EGR Quality and Unmixedness on the High-Load Limits of HCCI Engines
,”
SAE Int. J. Engines
,
2
(
1
), pp.
492
510
10.4271/2009-01-0666.
35.
Dec
,
J. E.
and
Yang
,
Y.
,
2010
, “
Boosted HCCI for High Power Without Engine Knock and With Ultra-Low NOx Emissions Using Conventional Gasoline
,”
SAE Int. J. Engines
,
3
(
1
), pp.
750
767
10.4271/2010-01-1086.
36.
Johansson
,
T.
,
Johansson
,
B.
,
Tunestål
,
P.
, and
Aulin
,
H.
,
2009
, “
HCCI Operating Range in a Turbo-Charged Multi Cylinder Engine With VVT and Spray-Guided DI
,”
SAE
Technical Paper No. 2009-01-0494.10.4271/2009-01-0494
37.
Shahbakhti
,
M.
and
Koch
,
C. R.
,
2010
, “
Physics Based Control Oriented Model for HCCI Combustion Timing
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
2
), p.
021010
.10.1115/1.4000036
38.
Shahbakhti
,
M.
,
Lupul
,
R.
, and
Koch
,
C. R.
,
2007
, “
Sensitivity Analysis and Modeling of HCCI Auto-Ignition Timing
,”
Fifth IFAC Symposium on Advances in Automotive Control
, Pajaro Dunes, August 20–22, pp.
303
310
10.3182/20070820-3-US-2918.00042.
39.
Franklin
,
G. F.
,
Powell
,
D.
, and
Workman
,
M. L.
,
1988
,
Digital Control of Dynamic Systems
,
3rd ed.
,
Addison-Wesley
,
Menlo Park, CA
.
You do not currently have access to this content.