High fidelity models that balance accuracy and computation load are essential for real-time model-based control of homogeneous charge compression ignition (HCCI) engines. Gray-box modeling offers an effective technique to obtain desirable HCCI control models. In this paper, a physical HCCI engine model is combined with two feed-forward artificial neural network models to form a serial architecture gray-box model. The resulting model can predict three major HCCI engine control outputs, including combustion phasing, indicated mean effective pressure (IMEP), and exhaust gas temperature (Texh). The gray-box model is trained and validated with the steady-state and transient experimental data for a large range of HCCI operating conditions. The results indicate that the gray-box model significantly improves the predictions from the physical model. For 234 HCCI conditions tested, the gray-box model predicts combustion phasing, IMEP, and Texh with an average error of less than 1 crank angle degree, 0.2 bar, and 6 °C, respectively. The gray-box model is computationally efficient and it can be used for real-time control application of HCCI engines.

References

References
1.
Zhao
,
F.
,
Asmus
,
T.
,
Assanis
,
D. N.
,
Dec
,
J. E.
,
Eng
,
J. A.
, and
Najt
,
P. M.
,
2003
, Homogeneous Charge Compression Ignition (HCCI) Engines, Society of Automotive Engineers, Warrendale, PA.
2.
Shahbakhti
,
M.
,
Lupul
,
R.
, and
Koch
,
C. R.
,
2007
, “
Sensitivity Analysis and Modeling of HCCI Auto-Ignition Timing
,”
Fifth IFAC Symposium on Advances in Automotive Control
, Pajaro Dunes, August 20–22, pp.
303
310
.
3.
Williams
,
S.
,
Hu
,
L.
,
Nakazono
,
T.
,
Ohtsubo
,
H.
, and
Uchida
,
M.
,
2008
, “
Oxidation Catalysts for Natural Gas Engine Operating Under HCCI or SI Conditions
,”
SAE
Technical Paper No. 2008-01-0807.10.4271/2008-01-0807
4.
Olsson
,
J. O.
,
Tunestål
,
P.
, and
Johansson
,
B.
,
2001
, “
Closed-Loop Control of an HCCI Engine
,”
SAE
Paper No. 2001-01-1031.10.4271/2001-01-1031
5.
Olsson
,
J. O.
,
Tunestål
,
P.
,
Haraldsson
,
G.
, and
Johansson
,
B.
,
2001
, “
A Turbo Charged Dual Fuel HCCI Engine
,”
SAE
Paper No. 2001-01-1896.10.4271/2001-01-1896
6.
Agrell
,
F.
,
Ångström
,
H. E.
,
Eriksson
,
B.
,
Wikander
,
J.
, and
Linderyd
,
J.
,
2003
, “
Integrated Simulation and Engine Test of Closed-Loop HCCI Control by Aid of Variable Valve Timings
,”
SAE Trans.
,
112
(
3
), pp.
1078
1091
.10.4271/2003-01-0748
7.
Strandh
,
P.
,
Bengtsson
,
J.
,
Johansson
,
R.
,
Tunestål
,
P.
, and
Johansson
,
B.
,
2004
, “
Cycle-to-Cycle Control of a Dual Fuel HCCI Engine
,”
SAE
Paper No. 2004-01-0941.10.4271/2004-01-0941
8.
Strandh
,
P.
,
Bengtsson
,
J.
,
Johansson
,
R.
,
Tunestål
,
P.
, and
Johansson
,
B.
,
2005
, “
Variable Valve Actuation for Timing Control of a HCCI Engine
,”
SAE
Technical Paper No. 2005-01-0147.10.4271/2005-01-0147
9.
Haraldsson
,
G.
,
Tunestål
,
P.
, and
Johansson
,
B.
,
2005
, “
Transient Control of a Multi Cylinder HCCI Engine During a Drive Cycle
,”
SAE
Paper No. 2005-01-0153.10.4271/2005-01-0153
10.
Audet
,
A.
and
Koch
,
C. R.
,
2009
, “
Actuator Comparison for Closed Loop Control of HCCI Combustion Timing
,”
SAE
Technical Paper No. 2009-01-1135.10.4271/2009-01-1135
11.
Bengtsson
,
J.
,
Strandh
,
P.
,
Johansson
,
R.
,
Tunestål
,
P.
, and
Johansson
,
B.
,
2007
, “
Hybrid Modeling of Homogeneous Charge Compression Ignition (HCCI) Engine Dynamics—A Survey
,”
Int. J. Control
,
80
(
11
), pp.
1814
1847
.10.1080/00207170701484869
12.
Mirhassani
,
M.
,
Chen
,
X.
,
Tahmasebi
,
A.
, and
Ahmadi
,
M.
,
2006
, “
On Control of HCCI Combustion—Neural Network Approach
,”
IEEE International Conference on Control Applications
(
CCA
), Munich, Germany, October 4–6, pp. 1669–1674.10.1109/CACSD-CCA-ISIC.2006.4776892
13.
Janakiraman
, V
. M.
,
Nguyen
,
X.
, and
Assanis
,
D.
,
2013
, “
Nonlinear Identification of a Gasoline HCCI Engine Using Neural Networks Coupled With Principal Component Analysis
,”
Appl. Soft Comput.
,
13
(
5
), pp.
2375
2389
.10.1016/j.asoc.2013.01.006
14.
Bahri
,
B.
,
Aziz
,
A. A.
,
Shahbakhti
,
M.
, and
Said
,
M. F. M.
, 2013, “
Understanding and Detecting Misfire in an HCCI Engine Fuelled With Ethanol
,”
J. Appl. Energy
,
108
, pp.
24
33
.10.1016/j.apenergy.2013.03.004
15.
Chiang
,
C. J.
,
Stefanopoulou
,
A. G.
, and
Jankovic
,
M.
,
2007
, “
Nonlinear Observer-Based Control of Load Transitions in Homogeneous Charge Compression Ignition Engines
,”
IEEE Trans. Control Syst. Technol.
,
15
(
3
), pp.
438
448
.10.1109/TCST.2007.894637
16.
Chiang
,
C. J.
,
Huang
,
C. C.
, and
Jankovic
,
M.
,
2010
, “
Discrete-Time Cross-Term Forwarding Design of Robust Controllers for HCCI Engines
,”
American Control Conference
(ACC), Baltimore, MD, June 30–July 2, pp.
2218
2223
.
17.
Bidarvatan
,
M.
,
Shahbakhti
,
M.
, and
Jazayeri
,
S. A.
,
2012
, “
Model-Based Control of Combustion Phasing in an HCCI Engine
,”
SAE Int. J. Engines
,
5
(
3
), pp.
1163
1176
.10.4271/2012-01-1137
18.
Widd
,
A.
,
Ekholm
,
K.
,
Tunestål
,
P.
, and
Johansson
,
R.
,
2012
, “
Physics-Based Model Predictive Control of HCCI Combustion Phasing Using Fast Thermal Management and VVA
,”
IEEE Trans. Control Syst. Technol.
,
20
(
3
), pp.
688
699
.10.1109/TCST.2011.2128871
19.
Shaver
,
G. M.
,
Gerdes
,
J. C.
, and
Roelle
,
M. J.
,
2004
, “
Physics-Based Closed Loop Control of Phasing, Peak Pressure and Work Output in HCCI Engines Utilizing Variable Valve Actuation
,”
American Control Conference
(ACC), Boston, MA, June 30–July 2, pp.
150
155
.
20.
Shaver
,
G. M.
,
Gerdes
,
J. C.
, and
Roelle
,
M. J.
,
2009
, “
Physics-Based Modeling and Control of Residual-Affected HCCI Engines
,”
ASME J. Dyn. Syst., Meas., Control
,
131
(
2
), p.
021002
.10.1115/1.3023125
21.
Ravi
,
N.
,
Roelle
,
M. J.
,
Liao
,
H-H.
,
Jungkunz
,
A. F.
,
Chang
,
C-F.
,
Park
,
S.
, and
Gerdes
,
J. C.
,
2010
, “
Model-Based Control of HCCI Engines Using Exhaust Recompression
,”
IEEE Trans. Control Syst. Technol.
,
18
(
6
), pp.
1289
1302
.10.1109/TCST.2009.203659
22.
Ravi
,
N.
,
Liao
,
H. H.
,
Jungkunz
,
A. F.
,
Widd
,
A.
, and
Gerdes
,
J. C.
,
2012
, “
Model Predictive Control of HCCI Using Variable Valve Actuation and Fuel Injection
,”
J. Control Eng. Pract.
,
20
(
4
), pp.
421
430
.10.1016/j.conengprac.2011.12.002
23.
Ravi
,
N.
,
Liao
,
H.-H.
,
Jungkunz
,
A. F.
,
Chang
,
C. F.
,
Song
,
H. H.
, and
Gerdes
,
J. C.
,
2012
, “
Modeling and Control of an Exhaust Recompression HCCI Engine Using Split Injection
,”
ASME J. Dyn. Syst., Meas., Control
,
134
(
1
), p.
011016
.10.1115/1.4004787
24.
Bidarvatan
,
M.
and
Shahbakhti
,
M.
,
2013
, “
Two-Input Two-Output Control of Blended Fuel HCCI Engines
,”
SAE
Paper No. 2013-01-1663.10.4271/2013-01-1663
25.
Tandra
, V
.
and
Srivastava
,
N.
,
2009
, “
Optimal Peak Pressure and Exhaust Temperature Tracking Control for a Two Zone HCCI Engine Model With Mean Burn Duration
,”
SAE
Paper No. 2009-01-1130.10.4271/2009-01-1130
26.
Ebrahimi
,
K.
,
Koch
,
C.
, and
Schramm
,
A.
,
2013
, “
A Control Oriented Model With Variable Valve Timing for HCCI Combustion Timing Control
,”
SAE
Paper No. 2013-01-0588.10.4271/2013-01-0588
27.
Bidarvatan
,
M.
,
Shahbakhti
,
M.
,
Jazayeri
,
S. A.
, and
Koch
,
C. R.
,
2014
, “
Cycle-to-Cycle Modeling and Sliding Mode Control of Blended Fuel HCCI Engine
,”
J. Control Eng. Pract.
,
24
, pp.
79
91
.10.1016/j.conengprac.2013.11.008
28.
Shahbakhti
,
M.
,
Ghazimirsaied
,
A.
, and
Koch
,
C. R.
,
2010
, “
Experimental Study of Exhaust Temperature Variation in a Homogeneous Charge Compression Ignition Engine
,”
Proc. Inst. Mech. Eng., Part D: J. Automob. Eng.
,
224
(
9
), pp.
1177
1197
.10.1243/09544070JAUTO1473
29.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
30.
Ferrari
, V
.
,
Rabinowitz
,
H.
,
Siemund
,
S.
,
Collinq
,
T.
, and
Campbell
,
B.
,
2007
, “
Achieving EURO III and EURO IV With Ultra-Low Precious Metal Loadings
,”
SAE
Paper No. 2007-01-2565.10.4271/2007-01-2565
31.
Jean
,
E.
,
Leroy
, V
.
,
Montenegro
,
G.
,
Onorati
,
A.
, and
Laurell
,
M.
,
2007
, “
Impact of Ultra Low Thermal Inertia Manifolds on Emission Performance
,”
SAE
Paper No. 2007-01-0935.10.4271/2007-01-0935
32.
Shahbakhti
,
M.
and
Koch
,
C. R.
,
2010
, “
Physics Based Control Oriented Model for HCCI Combustion Timing
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
2
), p.
021010
.10.1115/1.4000036
33.
Haykin
,
S.
,
2008
,
Neural Networks and Learning Machines
, 3rd ed.,
Prentice-Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.