The dual throat nozzle (DTN) technique is capable to achieve higher thrust-vectoring efficiencies than other fluidic techniques, without compromising thrust efficiency significantly during vectoring operation. The excellent performance of the DTN is mainly due to the concaved cavity. In this paper, two DTNs of different scales have been investigated by unsteady numerical simulations to compare the parameter variations and study the effects of cavity during the vector starting process. The results remind us that during the vector starting process, dynamic loads may be generated, which is a potentially challenging problem for the aircraft trim and control.

References

References
1.
Walker
,
S. H.
,
1997
, “
Lessons Learned in the Development of a National Cooperative Program
,”
AIAA
Paper No. 97-3348.10.2514/6.1997-3348
2.
Deere
,
K. A.
,
1997
, “
Summary of Fluidic Thrust Vectoring Research Conducted at NASA Langley Research Center
,”
AIAA
Paper No. 2003-3800.10.2514/6.2003-3800
3.
Deere
,
K. A.
,
2000
, “
Computational Investigation of the Aerodynamic Effects on Fluidic Thrust Vectoring
,”
AIAA
Paper No. 2000-3598.10.2514/6.2000-3598
4.
YonhHeo
,
J.
, and
Sung
,
H.-G.
,
2012
, “
Fluid Thrust-Vector Control of Supersonic Jet Using Coflow Injection
,”
J. Propul. Power
,
28
(
4
), pp.
858
861
.10.2514/1.B34266
5.
Miller
,
D. N.
,
Yagle
,
P. J.
, and
Hamstra
,
J. W.
,
1999
, “
Fluidic Throat Skewing for Thrust Vectoring in Fixed-Geometry Nozzles
,”
AIAA
Paper No. 99-0365.10.2514/6.1999-365
6.
Williams
,
R. G.
, and
Vittal
,
B. R.
,
2002
, “
Fluidic Thrust Vectoring and Throat Control Exhaust Nozzle
,”
AIAA
Paper No. 2002-4060.10.2514/6.2002-4060
7.
Shin
,
C.
, and
Dong Kim
,
H.
,
2010
, “
A Computational Study of Thrust Vectoring Control Using Dual Throat Nozzle
,”
J. Therm. Sci.
,
19
(
6
), pp.
486
490
.10.1007/s11630-010-0413-x
8.
Abeyounis
,
W. K.
, and
Bennett
,
B. D.
, Jr.
,
1997
, “
Static Internal Performance of an Over Expanded Fixed-Geometry, Nonaxisymmetric Nozzle With Fluidic Pitch-Thrust-Vectoring Capability
,” NASA Paper No. TP-3645.
9.
Strykowski
,
P. J.
, and
Krothapalli
,
A.
,
1993
, “
The Countercurrent Mixing Layer: Strategies for Shear-Layer Control
,”
AIAA
Paper No. 93-3260.10.2514/6.1993-3260
10.
Flamm
,
J. D.
,
1998
, “
Experimental Study of a Nozzle Using Fluidic Counterflow for Thrust Vectoring
,”
AIAA
Paper No. 98-3255.10.2514/6.1998-3255
11.
Deere
,
K.
A,
1998
, “
PAB3D Simulation of a Nozzle With Fluidic Injection For Yaw Thrust-Vector Control
,”
AIAA
Paper No. 98-3254.10.2514/6.1998-3254
12.
Deere
,
K. A.
,
Berrier
,
B. L.
,
Flamm
,
J. D.
, and
Johnson
,
S. K.
,
2005
, “
A Computational Study of a Dual Throat Fluidic Thrust Vectoring Nozzle Concept
,”
AIAA
Paper No. 2005-3502.10.2514/6.2005-3502
13.
Flamm
,
J. D.
,
Deere
,
K. A.
,
Berrier
,
B. L.
, and
Johnson
,
S. K.
,
2005
, “
An Experimental Study of a Dual Throat Fluidic Thrust Vectoring Nozzle Concept
,”
AIAA
Paper No. 2005-3503.10.2514/6.2005-3503
14.
Deere
,
K. A.
,
Flamm
,
J. D.
,
Berrier
,
B. L.
, and
Johnson
,
S. K.
,
2007
, “
Computational Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for a Supersonic Aircraft Application
,”
AIAA
Paper No. 2007-5085.10.2514/6.2007-5085
15.
Deere
,
K. A.
,
Flamm
,
J. D.
,
Berrier
,
B. L.
, and
Johnson
,
S. K.
2007
, “
Experimental Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle Concept for Supersonic Aircraft Application
,”
AIAA
Paper No. 2007-5084.10.2514/6.2007-5084
16.
Flamm
,
J. D.
,
Deere
,
K. A.
,
Mason
,
M. L.
,
Berrier
,
B. L.
, and
Johnson
,
S. K.
,
2006
, “
Design Enhancements of the Two-Dimensional, Dual Throat Fluidic Thrust Vectoring Nozzle Concept
,”
AIAA
Paper No. 2006-3701.10.2514/6.2006-3701
17.
Radhakrishnan
,
S.
, and
Meganathan
,
A. J.
,
2002
, “
Open Cavity Flow at Subsonic Speeds—Comparison of Numerical Simulations With Experiments
,”
AIAA
Paper No. 2002-0571.10.2514/6.2002-0571
18.
Li
,
Z.
,
Li
,
J.
, and
Yan
,
X.
,
2011
, “
Effects of Pressure Ratio and Rotational Speed on Leakage Flow and Cavity Pressure in the Staggered Labyrinth Seal
,”
ASME J. Eng. Gas Turbines Power
,
133
(
11
), p.
114503
.10.1115/1.4003788
19.
Ganine
,
V.
,
Umesh
,
J.
, and
Hills
,
N.
,
2012
, “
Coupled Fluid-Structure Transient Thermal Analysis of a Gas Turbine Internal Air System With Multiple Cavities
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), pp.
102508
.10.1115/1.4007060
20.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
, pp.
89
109
.
You do not currently have access to this content.