Depending on the feedstock and the production method, the composition of syngas can include (in addition to H2 and CO) small hydrocarbons, diluents (CO2, water, and N2), and impurities (H2S, NH3, NOx, etc.). Despite this fact, most of the studies on syngas combustion do not include hydrocarbons or impurities and in some cases not even diluents in the fuel mixture composition. Hence, studies with realistic syngas composition are necessary to help in designing gas turbines. The aim of this work was to investigate numerically the effect of the variation in the syngas composition on some fundamental combustion properties of premixed systems such as laminar flame speed and ignition delay time at realistic engine operating conditions. Several pressures, temperatures, and equivalence ratios were investigated for the ignition delay times, namely 1, 10, and 35 atm, 900–1400 K, and ϕ = 0.5 and 1.0. For laminar flame speed, temperatures of 300 and 500 K were studied at pressures of 1 atm and 15 atm. Results showed that the addition of hydrocarbons generally reduces the reactivity of the mixture (longer ignition delay time, slower flame speed) due to chemical kinetic effects. The amplitude of this effect is, however, dependent on the nature and concentration of the hydrocarbon as well as the initial condition (pressure, temperature, and equivalence ratio).

References

References
1.
Zhang
,
W.
,
2010
, “
Automotive Fuels From Biomass Via Gasification
,”
Fuel Process. Technol.
,
91
, pp.
866
876
.10.1016/j.fuproc.2009.07.010
2.
Göransson
,
K.
,
Söderlind
,
U.
,
He
,
J.
, and
Zhang
,
W.
,
2011
, “
Review of Syngas Production Via Biomass DFBGs
,”
Renewable Sustainable Energy Rev.
,
15
, pp.
482
492
.10.1016/j.rser.2010.09.032
3.
Chacartegui
,
R.
,
Torres
,
M.
,
Sánchez
,
D.
,
Jiménez
,
F.
,
Muñoz
,
A.
, and
Sánchez
,
T.
,
2011
, “
Analysis of Main Gaseous Emissions of Heavy Duty Gas Turbines Burning Several Syngas Fuels
,”
Fuel Process. Technol.
,
92
, pp.
213
220
.10.1016/j.fuproc.2010.03.014
4.
Munasinghe
,
P. C.
, and
Khanal
,
S. K.
,
2010
, “
Biomass-Derived Syngas Fermentation Into Biofuels: Opportunities and Challenges
,”
Bioresour. Technol.
,
101
, pp.
5013
5022
.10.1016/j.biortech.2009.12.098
5.
Newby
,
A.
,
Smeltzer
,
E. E.
,
Lippert
,
T. E.
,
Slimane
,
R. B.
,
Akpolat
,
O. M.
,
Pandya
,
K.
,
Lau
,
F. S.
,
Abbasian
,
J.
,
Williams
,
B. E.
, and
Leppin
,
D.
,
2001
, “
Novel Gas Cleaning/Conditioning for Integrated Gasification Combined Cycle Base Program
,” Report No. DE-AC26-99FT40674.
6.
Maurstad
,
O.
,
2005
, “
An Overview of Coal Based Integrated Gasification Combined Cycle (IGCC) Technology
,” Massachusetts Institute of Technology, Laboratory for Energy and the Environment, Report No. LFEE 2005-002 WP.
7.
Trembly
,
J. P.
,
Gemmen
,
R. S.
, and
Bayless
,
D. J.
,
2007
, “
The Effect of IGFC Warm Gas Cleanup System Conditions on the Gas–Solid Partitioning and Form of Trace Species in Coal Syngas and Their Interactions With SOFC Anodes
,”
J. Power Sources
,
163
, pp.
986
996
.10.1016/j.jpowsour.2006.10.020
8.
Trembly
,
J. P.
,
Gemmen
,
R. S.
, and
Bayless
,
D. J.
,
2007
, “
The Effect of Coal Syngas Containing HCl on the Performance of Solid Oxide Fuel Cells: Investigations Into the Effect of Operational Temperature and HCl Concentration
,”
J. Power Sources
,
169
, pp.
347
354
.10.1016/j.jpowsour.2007.03.018
9.
Cuoci
,
A.
,
Frassoldati
,
A.
,
Ferraris
,
G. B.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2007
, “
The Ignition, Combustion and Flame Structure of Carbon Monoxide/Hydrogen Mixtures. Note 2: Fluid Dynamics and Kinetic Aspects of Syngas Combustion
,”
Int. J. Hyd. Energy
,
32
, pp.
3486
3500
.10.1016/j.ijhydene.2007.02.026
10.
Iyoha
,
O.
,
Enick
,
R.
,
Killmeyer
,
R.
,
Howard
,
B.
,
Ciocco
,
M.
, and
Morreale
,
B.
,
2007
, “
H2 Production From Simulated Coal Syngas Containing H2S in Multi-Tubular Pd and 80 wt% Pd–20 wt% Cu Membrane Reactors at 1173 K
,”
J. Membr. Sci.
,
306
, pp.
103
115
.10.1016/j.memsci.2007.08.035
11.
Cayan
,
F. N.
,
Zhi
,
M.
,
Pakalapati
,
S. R.
,
Celik
,
I.
,
Wu
,
N.
, and
Gemmen
,
R.
,
2008
, “
Effects of Coal Syngas Impurities on Anodes of Solid Oxide Fuel Cells
,”
J. Power Sources
,
185
, pp.
595
602
.10.1016/j.jpowsour.2008.06.058
12.
Driscoll
,
D.
,
Morreale
,
B.
, and
Headley
,
L.
,
2008
NETL Test Protocol—Testing of Hydrogen Separation Membranes
,” Report No. DOE/NETL – 2008-1335.
13.
Xu
,
Z.-R.
,
Luo
,
J.-L.
, and
Chuang
,
K. T.
,
2009
, “
The Study of Au/MoS2 Anode Catalyst for Solid Oxide Fuel Cell (SOFC) Using H2S-Containing Syngas Fuel
,”
J. Power Sources
,
188
, pp.
458
462
.10.1016/j.jpowsour.2008.12.008
14.
Monteiro
,
E.
,
Bellenoue
,
M.
,
Sotton
,
J.
,
Moreira
,
N. A.
, and
Malheiro
,
S.
,
2010
, “
Laminar Burning Velocities and Markstein Numbers of Syngas–Air Mixtures
,”
Fuel
,
89
, pp.
1985
1991
.10.1016/j.fuel.2009.11.008
15.
Xu
,
D.
,
Tree
,
D. R.
, and
Lewis
,
R. S.
,
2011
, “
The Effects of Syngas Impurities on Syngas Fermentation to Liquid Fuels
,”
Biomass Bioenergy
,
35
, pp.
2690
2696
.10.1016/j.biombioe.2011.03.005
16.
Sharma
,
S. D.
,
McLennan
,
K.
,
Dolan
,
M.
,
Nguyen
,
T.
, and
Chase
,
D.
,
2013
, “
Design and Performance Evaluation of Dry Cleaning Process for Syngas
,”
Fuel
,
108
, pp.
42
53
.10.1016/j.fuel.2011.02.041
17.
Das
,
A. K.
,
Kumar
,
K.
, and
Sung
,
C.-J.
,
2011
, “
Laminar Flame Speeds of Moist Syngas Mixtures
,”
Combust. Flame
,
158
, pp.
345
353
.10.1016/j.combustflame.2010.09.004
18.
Burke
,
M. P.
,
Qin
,
X.
,
Ju
,
Y.
, and
Dryer
,
F. L.
,
2007
, “
Measurements of Hydrogen Syngas Flame Speeds at Elevated Pressures
,”
Proceedings of the 5th U.S. Combustion Meeting
, San Diego, CA, March 25–28.
19.
Natarajan
,
J.
,
Kochar
,
Y.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2009
, “
Pressure and Preheat Dependence of Laminar Flame Speeds of H2/CO/CO2/O2/He Mixtures
,”
Proc. Combust. Inst.
,
32
, pp.
1261
1268
.10.1016/j.proci.2008.06.110
20.
Natarajan
,
J.
,
Nandula
,
S.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2005
, “
Laminar Flame Speeds of Synthetic Gas Fuel Mixtures
,”
ASME
Paper No. GT2005-68917.10.1115/GT2005-68917
21.
McLean
,
I. C.
,
Smith
,
D. B.
, and
Taylor
,
S. C.
,
1994
, “
The Use of Carbon Monoxide/Hydrogen Burning Velocities to Examine the Rate of the CO + OH Reaction
,”
Proc. Combust. Inst.
,
25
, pp.
749
757
.10.1016/S0082-0784(06)80707-1
22.
Dong
,
C.
,
Zhou
,
Q.
,
Zhao
,
Q.
,
Zhang
,
Y.
,
Xu
,
T.
, and
Hui
,
S.
,
2009
, “
Experimental Study on the Laminar Flame speed of Hydrogen/Carbon Monoxide/Air Mixtures
,”
Fuel
,
88
, pp.
1858
1863
.10.1016/j.fuel.2009.04.024
23.
Hassan
,
M. I.
,
Aung
,
K. T.
, and
Faeth
,
G. M.
,
1997
, “
Properties of Laminar Premixed CO/H2/Air Flames at Various Pressures
,”
J. Propul. Power
,
13
, pp.
239
245
.10.2514/2.5154
24.
Bouvet
,
N.
,
Chauveau
,
C.
,
Gokalp
,
I.
, and
Halter
,
F.
,
2011
, “
Experimental Studies of the Fundamental Flame Speeds of Syngas (H2/CO)/Air Mixtures
,”
Proc. Combust. Inst.
,
33
, pp.
913
920
.10.1016/j.proci.2010.05.088
25.
Prathap
,
C.
,
Ray
,
A.
, and
Ravi
,
M. R.
,
2008
, “
Investigation of Nitrogen Dilution Effects on the Laminar Burning Velocities and Flame Stability of Syngas Fuel at Atmospheric Condition
,”
Combust. Flame
,
155
, pp.
145
160
.10.1016/j.combustflame.2008.04.005
26.
Burke
,
M. P.
,
Chaos
,
M.
,
Dryer
,
F. L.
, and
Ju
,
Y.
,
2010
, “
Negative Pressure Dependence of Mass Burning Rates of H2/CO/O2/Diluent Flames at Low Flame Temperature
,”
Combust. Flame
,
157
, pp.
618
631
.10.1016/j.combustflame.2009.08.009
27.
Sun
,
H.
,
Yang
,
S. I.
,
Jomaas
,
G.
, and
Law
,
C. K.
,
2007
, “
High-Pressures Laminar Flame Speeds and Kinetic Modeling of Carbon Monoxide/Hydrogen Combustion
,”
Proc. Combust. Inst.
,
31
, pp.
439
446
.10.1016/j.proci.2006.07.193
28.
Gardiner
,
W. C.
,
McFarland
,
M.
,
Morinaga
,
K.
,
Takeyama
,
T.
, and
Walker
,
B. F.
,
1971
, “
Initiation Rate for Shock-Heated Hydrogen–Oxygen–Carbon Monoxide–Argon Mixtures as Determined by OH Induction Time Measurements
,”
J. Phys. Chem.
,
75
, pp.
1504
1509
.10.1021/j100680a022
29.
Dean
,
A. M.
,
Steiner
,
D. C.
, and
Wang
,
E. E.
,
1978
, “
A Shock Tube Study of the H2/O2/CO/Ar and H2/N2O/CO/Ar Systems: Measurement of the Rate Constant for H + N2O = N2 + OH
,”
Combust. Flame
,
32
, pp.
73
83
.10.1016/0010-2180(78)90081-0
30.
Kalitan
,
D. M.
,
Mertens
,
J. D.
,
Crofton
,
M. W.
, and
Petersen
,
E. L.
,
2007
, “
Ignition and Oxidation of Lean CO/H2 Fuel Blends in Air
,”
J. Propul. Power
,
23
, pp.
1291
1303
.10.2514/1.28123
31.
Herzler
,
J.
, and
Naumann
,
C.
,
2008
, “
Shock Tube Study of the Ignition of Lean CO/H2 Fuel Blends at Intermediate Temperatures and High Pressure
,”
Combust. Sci. Technol.
,
180
, pp.
2015
2028
.10.1080/00102200802269715
32.
Krejci
,
M.
,
Mathieu
,
O.
,
Vissotski
,
A. J.
,
Ravi
,
S.
,
Sikes
,
T. G.
,
Petersen
,
E. L.
,
Kéromnès
,
A.
,
Metcalfe
,
W.
, and
Curran
,
H. J.
,
2012
, “
Laminar Flame Speed and Ignition Delay Time Data for the Kinetic Modeling of Hydrogen and Syngas Fuel Blends
,” Proceedings of ASME Turbo Expo 2012,
Copenhagen, Denmark
, June 11–15,
ASME
Paper No. GT2012-69290.10.1115/GT2012-69290
33.
Kéromnès
,
A.
,
Metcalfe
,
W. K.
,
Donohoe
,
N.
,
Das
,
A. K.
,
Sung
,
C. J.
,
Herzler
,
J.
,
Naumann
,
C.
,
Griebel
,
P.
,
Mathieu
,
O.
,
Krejci
,
M. C.
,
Petersen
,
E.
,
Pitz
,
W. J.
, and
Curran
,
H. J.
, “
An Experimental and Detailed Chemical Kinetic Modelling Study of Hydrogen and Syngas Mixtures at Elevated Pressures
,”
Combust. Flame
,
160
, pp.
995
1011
.10.1016/j.combustflame.2013.01.001
34.
Walton
,
S. M.
,
He
,
X.
,
Zigler
,
B. Z.
, and
Wooldridge
,
M. S.
,
2007
, “
An Experimental Investigation of the Ignition Properties of Hydrogen and Carbon Monoxide Mixtures for Syngas Turbine Applications
,”
Proc. Combust. Inst.
,
31
, pp.
3147
3154
.10.1016/j.proci.2006.08.059
35.
Mittal
,
G.
,
Sung
,
C.-J.
, and
Yetter
,
R. A.
,
2006
, “
Autoignition of H2/CO at Elevated Pressures in a Rapid Compression Machine
,”
Int. J. Chem. Kinet.
,
38
, pp.
516
529
.10.1002/kin.20180
36.
Mittal
,
G.
,
Sung
,
C.-J.
,
Fairweather
,
M.
,
Tomlin
,
A. S.
,
Griffiths
,
J. F.
, and
Hughes
,
K. J.
,
2007
, “
Significance of the HO2 + CO Reaction During the Combustion of CO + H2 Mixtures at High Pressures
,”
Proc. Combust. Inst.
,
31
, pp.
419
427
.10.1016/j.proci.2006.07.068
37.
Fotache
,
C. G.
,
Tan
,
Y.
,
Sung
,
C. J.
, and
Law
,
C. K.
,
2000
, “
Ignition of CO/H2/N2 Versus Heated Air in Counterflow: Experimental and Modeling Results
,”
Combust. Flame
,
120
, pp.
417
426
.10.1016/S0010-2180(99)00098-X
38.
Mathieu
,
O.
,
Kopp
,
M. M.
, and
Petersen
,
E. L.
,
2013
, “
Shock Tube Study of the Ignition of Multi-Component Syngas Mixture With and Without Ammonia Impurities
,”
Proc. Combust. Inst.
,
34
, pp.
3211
3218
.10.1016/j.proci.2012.05.008
39.
Petersen
,
E. L.
,
Kalitan
,
D. M.
,
Barrett
,
A. B.
,
Reehal
,
S. C.
,
Mertens
,
J. D.
,
Beerer
,
D. J.
,
Hack
,
R. L.
, and
McDonell
,
V. G.
,
2007
, “
New Syngas/Air Ignition Data at Lower Temperature and Elevated Pressure and Comparison to Current Kinetics Models
,”
Combust. Flame
,
149
, pp.
244
247
.10.1016/j.combustflame.2006.12.007
40.
Peschke
,
W. T.
, and
Spadaccini
,
L. J.
,
1985
, “
Determination of Autoignition and Flame Speed Characteristics of Coal Gases Having Medium Heating Values
,” Electric Power Institute Report No. EPRI AP-4291.
41.
Metcalfe
,
W. K.
,
Burke
,
S. M.
,
Ahmed
,
S. S.
, and
Curran
,
H. J.
,
2013
, “
A Hierarchical and Comparative Kinetic Modeling Study of C1–C2 Hydrocarbon and Oxygenated Fuels
,”
Int. J. Chem. Kinet.
,
45
, pp. 638–675.
42.
Wang
,
H.
,
You
,
X.
,
Joshi
,
A. V.
,
Davis
,
S. G.
,
Laskin
,
A.
,
Egolfopoulos
,
F.
, and
Law
,
C. K.
, “
USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds, May 2007
,” http://ignis.usc.edu/USC_Mech_II.htm
.
43.
Petrova
,
M. V.
, and
Williams
,
F. A.
,
2006
, “
A Small Detailed Chemical-Kinetic Mechanism for Hydrocarbon Combustion
,”
Combust. Flame
,
144
, pp.
526
544
.10.1016/j.combustflame.2005.07.016
44.
Mathieu
,
O.
,
Petersen
,
E. L.
,
Heufer
,
A.
,
Donohoe
,
N.
,
Metcalfe
,
W.
,
Curran
,
H. J.
,
Güthe
,
F.
, and
Bourque
,
G.
,
2013
, “
Numerical Study on the Effect of Real Syngas Compositions on Ignition Delay Times and Laminar Flame Speeds at Gas Turbine Conditions
,”
Proceedings of ASME Turbo Expo 2013
,
San Antonio, TX
, June 3–7.
45.
Jomaas
,
G.
,
Zheng
,
X. L.
,
Zhu
,
D. L.
, and
Law
,
C. K.
,
2005
, “
Experimental Determination of Counterflow Ignition Temperatures and Laminar Flame Speeds of C2–C3 Hydrocarbons at Atmospheric and Elevated Pressures
,”
Proc. Combust. Inst.
,
30
, pp.
193
200
.10.1016/j.proci.2004.08.228
46.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Grana
,
R.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Kelley
,
A. P.
, and
Law
,
C. K.
,
2012
, “
Hierarchical and Comparative Kinetic Modeling of Laminar Flame Speeds of Hydrocarbon and Oxygenated Fuels
,”
Prog. Energy Combust. Sci.
,
38
, pp.
468
501
.10.1016/j.pecs.2012.03.004
You do not currently have access to this content.