Large amounts of tiny microparticles are ingested into gas turbines over their operating life, resulting in unexpected wear and tear. Knowledge of such microparticle behavior at gas turbine operating temperatures is limited in published literature. In this study, Arizona road dust (ARD) is injected into a hot flow field to measure the effects of high temperature and velocity on particle rebound from a polished 304 stainless steel (SS) coupon. The results are compared with baseline (27 m/s) measurements at ambient (300 K) temperature made in the Virginia Tech Aerothermal Rig, as well as previously published literature. Mean coefficient of restitution (COR) was shown to decrease with the increased temperature/velocity conditions in the VT Aerothermal Rig. The effects of increasing temperature and velocity led to a 12% average reduction in COR at 533 K (47 m/s), 15% average reduction in COR at 866 K (77 m/s), and 16% average reduction in COR at 1073 K (102 m/s) compared with ambient results. The decrease in COR appeared to be almost entirely a result of increased velocity that resulted from heating the flow. Trends show that temperature plays a minor role in energy transfer between particle and impact surface below a critical temperature.

References

References
1.
Goldsmith
,
W.
,
2002
,
Impact: The Theory and Physical Behaviour of Colliding Solids
,
Dover Publications
,
Mineola, NY
.
2.
Armstrong
,
J. D.
,
Collings
,
N.
, and
Shayler
,
P. J.
,
1984
, “
Trajectory of Particles Rebounding Off Plane Targets
,”
AIAA
,
22
(
2
), pp.
214
218
.10.2514/3.48439
3.
Sommerfeld
,
M.
, and
Huber
,
N.
,
1999
, “
Experimental Analysis and Modelling of Particle-Wall Collisions
,”
Int. J. Multiphase Flow
,
25
, pp.
1457
1489
.10.1016/S0301-9322(99)00047-6
4.
Mok
,
C. H.
, and
Duffy
,
J.
,
1964
, “
The Behaviour of Metals at Elevated Temperatures Under Impact With a Bouncing Ball
,”
Int. J. Mech. Sci.
,
6
, pp.
161
175
.10.1016/0020-7403(64)90013-X
5.
Brenner
,
S. S.
,
Wriedt
,
H. A.
, and
Oriani
,
R. A.
,
1981
, “
Impact Adhesion of Iron at Elevated Temperatures
,”
Wear
,
68
(
2
), pp.
169
190
.10.1016/0043-1648(81)90086-7
6.
Tabakoff
,
W.
,
Grant
,
G.
, and
Ball
,
R.
,
1974
, “
An Experimental Investigation of Certain Aerodynamic Effects on Erosion
,” AIAA 8th Aerodynamic Testing Conference, Bethesda, MD, July 8–10,
AIAA
Paper No. 74-63910.2514/6.1974-639.
7.
Grant
,
G.
, and
Tabakoff
,
W.
,
1975
, “
Erosion Prediction in Turbomachinery Resulting From Environmental Solid Particles
,”
J. Aircraft
,
12
(
5
), pp.
471
478
.10.2514/3.59826
8.
Tabakoff
,
W.
,
1991
, “
Measurements of Particles Rebound Characteristics on Materials Used in Gas Turbines
,”
J. Propul. Power
,
7
(
5
), pp.
805
813
.10.2514/3.23395
9.
Tabakoff
,
W.
,
Hamed
,
A.
, and
Murugan
,
D. M.
,
1996
, “
Effect of Target Materials on the Particle Restitution Characteristics for Turbomachinery Application
,”
J. Propul. Power
,
12
(
2
), pp.
260
266
.10.2514/3.24022
10.
Finnie
,
I.
,
1960
, “
Erosion of Surfaces by Solid Particles
,”
Wear
,
3
(
2
), pp.
87
103
.10.1016/0043-1648(60)90055-7
11.
Wakeman
,
T.
, and
Tabakoff
,
W.
,
1979
, “
Erosion Behavior in a Simulated Jet Engine Environment
,”
J. Aircraft
,
16
(
12
), pp.
828
833
.10.2514/3.58611
12.
Hylton
,
L.
,
Nirmalan
,
V.
,
Sultanian
,
B.
, and
Kaufman
,
R.
,
1988
, “
The Effects of Leading Edge and Downstream Film Cooling on Turbine Vane Heat Transfer
,” NASA Contractor Report No. 182133.
13.
Nealy
,
D.
,
Mihelc
,
M.
,
Hylton
,
L.
, and
Gladden
,
H.
,
1984
, “
Measurements of Heat Transfer Distribution Over the Surfaces of Highly Loaded Turbine Nozzle Guide Vanes
,”
ASME J. Eng. Gas Turbine Power
,
106
, pp.
149
158
.10.1115/1.3239528
14.
Reagle
,
C. J.
,
Delimont
,
J. M.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2012
, “
A Novel Technique for Measuring the Coefficient of Restitution of Microparticle Impacts in a Forced Flowfield
,” ASME Paper No. GT2012-68252.
15.
Walsh
,
W. S.
,
Thole
,
K. A.
, and
Joe
,
C.
,
2006
, “
Effects of Sand Ingestion on the Blockage of Film-Cooling Holes
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air, Barcelona, Spain, May 8–11
,
ASME
Paper No. GT2006-90067, pp.
81
90
10.1115/GT2006-90067.
16.
Schairer
,
J. F.
, and
Bowen
,
N. L.
,
1947
, “
Melting Relations in the Systems Na2O-Al2O3-SiO2 and K2O-Al2O3-SiO2
,”
Am. J. Sci.
,
245
(
4
), pp.
193
204
.10.2475/ajs.245.4.193
17.
Wenk
,
H.-R.
, and
Bulakh
,
A.
,
2003
,
Minerals: Their Constitution and Origin
,
Cambridge University Press
,
Cambridge, UK
.
18.
Fischer-Cripps
,
A. C.
,
2000
,
Introduction to Contact Mechanics
,
Springer
,
New York
.
19.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
20.
Hutchings
,
I. M.
,
Macmillan
,
N. H.
, and
Rickerby
,
D. G.
,
1981
, “
Further Studies of the Oblique Impact of a Hard Sphere Against a Ductile Solid
,”
Int. J. Mech. Sci.
,
23
(
11
), pp.
639
646
.10.1016/0020-7403(81)90018-7
21.
Crosby
,
J. M.
,
Lewis
,
S.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
,
2008
, “
Effects of Temperature and Particle Size on Deposition in Land Based Turbines
,”
ASME J. Eng. Gas Turbine Power
,
130
(
5
), p.
051503
.10.1115/1.2903901
22.
Sreedharan
,
S. S.
, and
Tafti
,
D. K.
,
2011
, “
Composition Dependent Model for the Prediction of Syngas Ash Deposition in Turbine Gas Hotpath
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
201
211
.10.1016/j.ijheatfluidflow.2010.10.006
You do not currently have access to this content.