High temperature diesel engine exhaust gas can be an important source of heat to operate a bottoming Rankine cycle to produce additional power. In this research, an experiment was performed to calculate the available energy in the exhaust gas of an automotive diesel engine. A shell and tube heat exchanger was used to extract heat from the exhaust gas, and the performance of two shell and tube heat exchangers was investigated with parallel flow arrangement using water as the working fluid. The heat exchangers were purchased from the market. As the design of these heat exchangers was not optimal, the effectiveness was found to be 0.52, which is much lower than the ideal one for this type of application. Therefore, with the available experimental data, the important geometric aspects of the heat exchanger, such as the number and diameter of the tubes and the length and diameter of the shell, were optimized using computational fluid dynamics (CFD) simulation. The optimized heat exchanger effectiveness was found to be 0.74. Using the optimized heat exchangers, simulation was conducted to estimate the possible additional power generation considering 70% isentropic turbine efficiency. The proposed optimized heat exchanger was able to generate 20.6% additional power, which resulted in improvement of overall efficiency from 30% to 39%. Upon investigation of the effect of the working pressure on additional power generation, it was found that higher additional power can be achieved at higher working pressure. For this particular application, 30 bar was found to be the optimum working pressure at rated load. The working pressure was also optimized at part load and found that 2 and 20 were the optimized working pressures for 25% and 83% load. As a result 1.8% and 13.3% additional power were developed, respectively. Thus, waste heat recovery technology has a great potential for saving energy, improving overall engine efficiency, and reducing toxic emission per kilowatt of power generation.

References

References
1.
Bari
,
S.
,
2004
, “
Investigation Into the Deteriorated Performance of Diesel Engine After Prolonged Use of Vegetable Oil
,”
Proceedings of the ASME Internal Combustion Engine Division 2004 Fall Technical Conference
, Long Beach, CA, October 24–27,
ASME
Paper No. ICEF2004-0955.10.1115/ICEF2004-0955
2.
Bari
,
S.
,
Yu
,
C.
, and
Lim
,
T.
,
2002
, “
Filter Clogging and Power Loss Issues While Running a Diesel Engine With Waste Cooking Oil
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
,
216
(
12
), pp.
993
1001
.10.1243/095440702762508245
3.
He
,
M.
,
Zhang
,
X.
,
Zeng
,
K.
, and
Gao
,
K.
,
2011
, “
A Combined Thermodynamic Cycle Used for Waste Heat Recovery of Internal Combustion Engine
,”
Energy
,
36
(
12
), pp.
6821
6829
.10.1016/j.energy.2011.10.014
4.
Hatazawa
,
M.
,
Sugita
,
H.
,
Ogawa
,
T.
, and
Seo
,
Y.
,
2004
, “
Performance of a Thermoacoustic Sound Wave Generator Driven With Waste Heat of Automobile Gasoline Engine
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
,
70
(
689
), pp.
292
299
.10.1299/kikaib.70.292
5.
Johnson
,
V.
,
2002
, “
Heat-Generated Cooling Opportunities in Vehicles
,”
SAE
Technical Paper No. 2002-01-1969.10.4271/2002-01-1969
6.
Pandiyarajan
,
V.
,
Chinna Pandian
,
M.
,
Malan
,
E.
,
Velraj
,
R.
, and
Seeniraj
,
R. V.
,
2011
, “
Experimental Investigation on Heat Recovery From Diesel Engine Exhaust Using Finned Shell and Tube Heat Exchanger and Thermal Storage System
,”
Appl. Energy
,
88
(
1
), pp.
77
87
.10.1016/j.apenergy.2010.07.023
7.
Jiangzhou
,
S.
,
Wang
,
R. Z.
,
Lu
,
Y. Z.
,
Xu
,
Y. X.
, and
Wu
,
J. Y.
,
2005
, “
Experimental Study on Locomotive Driver Cabin Adsorption Air Conditioning Prototype Machine
,”
Energy Convers. Manage.
,
46
(
9–10
), pp.
1655
1665
.10.1016/j.enconman.2004.07.008
8.
Hung
,
T. C.
,
Shai
,
M. S.
, and
Pei
,
B. S.
,
2003
, “
Cogeneration Approach for Near Shore Internal Combustion Power Plants Applied to Seawater Desalination
,”
Energy Convers. Manage.
,
44
(
8
), pp.
1259
1273
.10.1016/S0196-8904(02)00123-1
9.
Diehl
,
P.
,
Haubner
,
F.
,
Klopstein
,
S.
, and
Koch
,
F.
,
2001
, “
Exhaust Heat Recovery System for Modern Cars
,”
SAE Trans.
,
110
(
3
), pp.
988
998
.
10.
Heywood
,
J. B.
,
1981
, “
Automotive Engines and Fuels: A Review of Future Options
,”
Prog. Energy Combust. Sci.
,
7
(
3
), pp.
155
184
.10.1016/0360-1285(81)90010-1
11.
Hiereth
,
H.
,
Prenninger
,
P.
, and
Drexl
,
K.
,
2007
,
Charging the Internal Combustion Engine
,
Springer
,
New York
.
12.
Pulkrabek
,
W. W.
,
2004
,
Engineering Fundamentals of the Internal Combustion Engine
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
13.
Ibrahim
,
A.
, and
Bari
,
S.
,
2009
, “
A Comparison Between EGR and Lean-Burn Strategies Employed in a Natural Gas SI Engine Using a Two-Zone Combustion Model
,”
Energy Convers. Manage.
,
50
(
12
), pp.
3129
3139
.10.1016/j.enconman.2009.08.012
14.
Ibrahim
,
A.
, and
Bari
,
S.
,
2010
, “
An Experimental Investigation on the Use of EGR in a Supercharged Natural Gas SI Engine
,”
Fuel
,
89
(
7
), pp.
1721
1730
.10.1016/j.fuel.2009.07.005
15.
Canakci
,
M.
,
2007
, “
Combustion Characteristics of a Turbocharged DI Compression Ignition Engine Fueled With Petroleum Diesel Fuels and Biodiesel
,”
Bioresour. Technol.
,
98
(
6
), pp.
1167
1175
.10.1016/j.biortech.2006.05.024
16.
Usta
,
N.
,
2005
, “
An Experimental Study on Performance and Exhaust Emissions of a Diesel Engine Fuelled With Tobacco Seed Oil Methyl Ester
,”
Energy Convers. Manage.
,
46
(
15–16
), pp.
2373
2386
.10.1016/j.enconman.2004.12.002
17.
Hountalas
,
D.
,
Katsanos
,
C.
,
Kouremenos
,
D.
, and
Rogdakis
,
E.
,
2007
, “
Study of Available Exhaust Gas Heat Recovery Technologies for HD Diesel Engine Applications
,”
Int. J. Altern. Propul.
,
1
(
2
), pp.
228
249
.10.1504/IJAP.2007.013019
18.
Hountalas
,
D. T.
,
Katsanos
,
C.
, and
Lamaris
,
V.
,
2007
, “
Recovering Energy From the Diesel Engine Exhaust Using Mechanical and Electrical Turbocompounding
,”
SAE
Technical Paper No. 2007-01-1563.10.4271/2007-01-1563
19.
Weerasinghe
,
W. M. S. R.
,
Stobart
,
R. K.
, and
Hounsham
,
S. M.
,
2010
, “
Thermal Efficiency Improvement in High Output Diesel Engines a Comparison of a Rankine Cycle With Turbo-Compounding
,”
Appl. Therm. Eng.
,
30
(
14–15
), pp.
2253
2256
.10.1016/j.applthermaleng.2010.04.028
20.
Dibella
,
F.
,
Dinanno
,
L.
, and
Koplow
,
M.
,
1983
, “
Laboratory and On-Highway Testing of Diesel Organic Rankine Compound Long-Haul Vehicle Engine
,”
SAE
Technical Paper No. 830122.10.4271/830122
21.
Doyle
,
E.
,
Dinanno
,
L.
, and
Kramer
,
S.
,
1979
, “
Installation of a Diesel-Organic Rankine Compound Engine in a Class 8 Truck for a Single-Vehicle Test
,”
SAE
Technical Paper No. 790646.10.4271/790646
22.
Patel
,
P.
, and
Doyle
,
E. F.
,
1976
, “
Compounding the Truck Diesel Engine With an Organic Rankine-Cycle System
,”
SAE
Technical Paper No. 760343.10.4271/760343
23.
Aly
,
S. E.
,
1988
, “
Diesel Engine Waste-Heat Power Cycle
,”
Appl. Energy
,
29
(
3
), pp.
179
189
.10.1016/0306-2619(88)90027-X
24.
Hounsham
,
S.
,
Stobart
,
R.
,
Cooke
,
A.
, and
Childs
,
P.
,
2008
, “
Energy Recovery Systems for Engines
,”
SAE
Paper No. 2008-01-0309.10.4271/2008-01-0309
25.
Kadota
,
M.
, and
Yamamoto
,
K.
,
2009
, “
Advanced Transient Simulation on Hybrid Vehicle Using Rankine Cycle System
,”
SAE Int. J. Engines
,
1
(
1
), pp.
240
247
.10.4271/2008-01-0310
26.
Kruiswyk
,
R. W.
,
2008
, “
An Engine System Approach to Exhaust Waste Heat Recovery
,” Diesel Engine-Efficiency and Emissions Research (DEER) Conference, Dearborn, MI, August 4–7.
27.
Nelson
,
C.
,
2008
, “
Exhaust Energy Recovery
,” Diesel Engine-Efficiency and Emissions Research (DEER) Conference, Dearborn, MI, August 4–7.
28.
Ringler
,
J.
,
Seifert
,
M.
,
Guyotot
,
V.
, and
Hübner
,
W.
,
2009
, “
Rankine Cycle for Waste Heat Recovery of IC Engines
,”
SAE Int. J. Engines
,
2
(
1
), pp.
67
76
.10.4271/2009-01-0174
29.
Cengel
,
Y. A.
,
Turner
,
R. H.
, and
Cimbala
,
J. M.
,
2008
,
Fundamentals of Thermal-Fluid Sciences
,
McGraw-Hill
,
New York
.
30.
Moran
,
M. J.
, and
Shapiro
,
H. N.
,
2000
,
Fundamentals of Engineering Thermodynamics
,
Wiley
,
New York
.
31.
Holman
,
J. P.
,
2011
,
Experimental Methods for Engineers
,
McGraw-Hill
,
New York
.
32.
Hosoz
,
M.
, and
Direk
,
M.
,
2006
, “
Performance Evaluation of an Integrated Automotive Air Conditioning and Heat Pump System
,”
Energy Convers. Manage.
,
47
(
5
), pp.
545
559
.10.1016/j.enconman.2005.05.004
33.
Hossain
,
S. N.
, and
Bari
,
S.
,
2013
, “
Waste Heat Recovery From the Exhaust of a Diesel Generator Using Rankine Cycle
,”
Energy Convers. Manage.
,
75
, pp.
141
151
.10.1016/j.enconman.2013.06.009
34.
Hossain
,
S. N.
, and
Bari
,
S.
,
2013
, “
Additional Power Generation From the Exhaust Gas of Diesel Engine by Bottoming Rankine Cycle
,”
SAE
Technical Paper No. 2013-01-1639.10.4271/2013-01-1639
35.
Huzayyin
,
A. S.
,
Bawady
,
A. H.
,
Rady
,
M. A.
, and
Dawood
,
A.
,
2004
, “
Experimental Evaluation of Diesel Engine Performance and Emission Using Blends of Jojoba Oil and Diesel Fuel
,”
Energy Convers. Manage.
,
45
(
13–14
), pp.
2093
2112
.10.1016/j.enconman.2003.10.017
36.
Muralidharan
,
K.
,
Vasudevan
,
D.
, and
Sheeba
,
K. N.
,
2011
, “
Performance, Emission and Combustion Characteristics of Biodiesel Fuelled Variable Compression Ratio Engine
,”
Energy
,
36
(
8
), pp.
5385
5393
.10.1016/j.energy.2011.06.050
37.
ANSYS
,
2011
,
Ansys CFX-Solver Theory Guide
,
Ansys Inc.
,
Canonsburg, PA
.
38.
Ramadhas
,
A. S.
,
Muraleedharan
,
C.
, and
Jayaraj
,
S.
,
2005
, “
Performance and Emission Evaluation of a Diesel Engine Fueled With Methyl Esters of Rubber Seed Oil
,”
Renewable Energy
,
30
(
12
), pp.
1789
1800
.10.1016/j.renene.2005.01.009
39.
Lapuerta
,
M.
,
Armas
,
O.
, and
Rodríguez-Fernández
,
J.
,
2008
, “
Effect of Biodiesel Fuels on Diesel Engine Emissions
,”
Prog. Energy Combust. Sci.
,
34
(
2
), pp.
198
223
.10.1016/j.pecs.2007.07.001
40.
Keenan
,
J.
,
1932
, “
A System Chart for Second Law Analysis
,”
ASME Mech. Eng.
,
54
, pp.
195
204
.
41.
Wang
,
J.
,
Dai
,
Y.
, and
Gao
,
L.
,
2009
, “
Exergy Analyses and Parametric Optimizations for Different Cogeneration Power Plants in Cement Industry
,”
Appl. Energy
,
86
(
6
), pp.
941
948
.10.1016/j.apenergy.2008.09.001
42.
Baehr
,
H. D.
,
2005
,
Thermodynamik
,
Springer
,
New York
.
43.
Ahern
,
J. E.
,
1980
,
Exergy Method of Energy Systems Analysis
,
Wiley
,
New York
.
44.
Teng
,
H.
,
Regner
,
G.
, and
Cowland
,
C.
,
2007
, “
Waste Heat Recovery of Heavy-Duty Diesel Engines by Organic Rankine Cycle Part I: Hybrid Energy System of Diesel and Rankine Engines
,”
SAE
Technical Paper No. 2007-01-0537.10.4271/2007-01-0537
45.
Hung
,
T. C.
,
Shai
,
T. Y.
, and
Wang
,
S. K.
,
1997
, “
A Review of Organic Rankine Cycles (ORCS) for the Recovery of Low-Grade Waste Heat
,”
Energy
,
22
(
7
), pp.
661
667
.10.1016/S0360-5442(96)00165-X
46.
Larjola
,
J.
,
1995
, “
Electricity From Industrial Waste Heat Using High-Speed Organic Rankine Cycle (ORC)
,”
Int. J. Prod. Econ.
,
41
(
1–3
), pp.
227
235
.10.1016/0925-5273(94)00098-0
47.
Leising
,
C.
,
Purohit
,
G.
,
Degrey
,
S.
, and
Finegold
,
J.
,
1978
, “
Waste Heat Recovery in Truck Engines
,”
SAE
Technical Paper No. 780686.10.4271/780686
48.
Alireza
,
B.
,
2011
, “
Simple Method for Estimation of Effectiveness in One Tube Pass and One Shell Pass Counter-Flow Heat Exchangers
,”
Appl. Energy
,
88
(
11
), pp.
4191
4196
.10.1016/j.apenergy.2011.05.003
49.
Guo
,
J.
,
Xu
,
M.
, and
Cheng
,
L.
,
2009
, “
The Application of Field Synergy Number in Shell-and-Tube Heat Exchanger Optimization Design
,”
Appl. Energy
,
86
(
10
), pp.
2079
2087
.10.1016/j.apenergy.2009.01.013
50.
Teng
,
H.
,
Regner
,
G.
, and
Cowland
,
C.
,
2007
, “
Waste Heat Recovery of Heavy-Duty Diesel Engines by Organic Rankine Cycle Part II: Working Fluids for WHR-ORC
,”
SAE
Technical Paper No. 2007-01-0543.10.4271/2007-01-0543
51.
Dolz
,
V.
,
Novella
,
R.
,
García
,
A.
, and
Sánchez
,
J.
,
2012
, “
HD Diesel Engine Equipped With a Bottoming Rankine Cycle as a Waste Heat Recovery System. Part 1: Study and Analysis of the Waste Heat Energy
,”
Appl. Therm. Eng.
,
36
, pp.
269
278
.10.1016/j.applthermaleng.2011.10.025
52.
Hountalas
,
D. T.
,
Mavropoulos
,
G. C.
,
Zannis
,
T. C.
, and
Schwarz
,
V.
,
2005
, “
Possibilities to Achieve Future Emission Limits for HD DI Diesel Engines Using Internal Measures
,”
SAE
Technical Paper No. 2005-01-0377.10.4271/2005-01-0377
53.
Hountalas
,
D. T.
,
Zannis
,
T. C.
, and
Mavropoulos
,
G. C.
,
2006
, “
Potential Benefits in Heavy Duty Diesel Engine Performance and Emissions From the Use of Variable Compression Ratio
,”
SAE
Technical Paper No. 2006-01-0081.10.4271/2006-01-0081
54.
Wang
,
E. H.
,
Zhang
,
H. G.
,
Fan
,
B. Y.
,
Ouyang
,
M. G.
,
Zhao
,
Y.
, and
Mu
,
Q. H.
,
2011
, “
Study of Working Fluid Selection of Organic Rankine Cycle (ORC) for Engine Waste Heat Recovery
,”
Energy
,
36
(
5
), pp.
3406
3418
.10.1016/j.energy.2011.03.041
55.
Wang
,
T.
,
Zhang
,
Y.
,
Peng
,
Z.
, and
Shu
,
G.
,
2011
, “
A Review of Researches on Thermal Exhaust Heat Recovery With Rankine Cycle
,”
Renewable Sustainable Energy Rev.
,
15
(
6
), pp.
2862
2871
.10.1016/j.rser.2011.03.015
56.
Bell
,
K. J.
,
1981
, “
Delaware Method for Shell Side Design
,”
Heat Exchangers: Thermal-Hydraulic Fundamentals and Design
,
S.
Kakaç
,
A. E.
Bergles
, and
F.
Mayinger
, eds.,
McGraw-Hill
,
New York
, pp.
581
618
.
57.
Lei
,
Y. G.
,
He
,
Y. L.
,
Chu
,
P.
, and
Li
,
R.
,
2008
, “
Design and Optimization of Heat Exchangers With Helical Baffles
,”
Chem. Eng. Sci.
,
63
(
17
), pp.
4386
4395
.10.1016/j.ces.2008.05.044
You do not currently have access to this content.