This paper presents a methodology for developing a control oriented analytical linear model of a turbofan engine at both equilibrium and nonequilibrium conditions. This scheme provides improved accuracy over the commonly used linearization method based on numerical perturbation and piecewise linear interpolation. Linear coefficients are obtained by evaluating at current conditions analytical expressions, which result from differentiation of simplified nonlinear expressions. Residualization of the fast dynamics states are utilized since the fast dynamics are outside of the primary control bandwidth. Analytical expressions based on the physics of the aerothermodynamic processes of a gas turbine engine facilitate a systematic approach to the analysis and synthesis of model based controllers. In addition, the use of analytical expressions reduces the computational effort, enabling linearization in real time at both equilibrium and nonequilibrium conditions to enable more accurate capture of system dynamics during aggressive transient maneuvers. The methodology is formulated and applied to a separate flow twin spool turbofan engine model in the numerical propulsion system simulation (NPSS) platform. The derived linear model is validated against the full nonlinear engine model.

References

References
1.
Qi
,
O. F.
,
Gawthrop
,
P. J.
, and
Maccallum
,
N. R. L.
,
1992
, “
Model-Based Observer: A Gas Turbine Engine Case Study
,”
Proceedings of the 1st IEEE Conference on Control Applications
, Dayton, OH, September 13–16, pp.
877
882
.10.1109/CCA.1992.269807
2.
Culley
,
D.
,
Garg
,
S.
,
Hiller
,
S.-J.
,
Horn
,
W.
,
Kumar
,
A.
,
Mathews
,
H. K.
,
Moustapha
,
H.
,
Pfoertner
,
H.
,
Rosenfeld
,
H.
,
Rybarik
,
P.
,
Schadow
,
K.
,
Stiharu
,
I.
,
Viassolo
,
D. E.
, and
Webster
,
J.
,
2009
, “
More Intelligent Gas Turbine Engines (Des turbomoteurs plus intelligents)
,”
RTO Technical Report No. TR-AVT-128.
3.
Tagashira
,
T.
,
Mizuno
,
T.
,
Koh
,
M.
, and
Sugiyama
,
N.
,
2009
, “
ATF Test Evaluation of Model Based Control for a Single Spool Turbojet Engine
,”
Proceedings of the ASME Turbo Expo 2009
,
Orlando, FL
, June 8–12,
ASME
Paper No. GT2009-59854, pp.
673
685
.10.1115/GT2009-59854
4.
Mahmood
,
S.
,
Griffin
,
I. A.
,
Fleming
,
P. J.
, and
Shutler
,
A. J.
,
2005
, “
Inverse Model Control of a Three Spool Gas Turbine Engine
,”
Proceedings of the ASME Turbo Expo 2005
,
Reno-Tahoe, NV
, June 6–9,
ASME
Paper No. GT2005-68772, pp.
731
736
.10.1115/GT2005-68772
5.
Turevskiy
,
A.
,
Meisner
,
R.
,
Luppold
,
R. H.
,
Kern
,
R. A.
, and
Fuller
,
J. W.
,
2002
, “
A Model-Based Controller for Commercial Aero Gas Turbines
,”
Proceedings of the ASME Turbo Expo 2002
,
Amsterdam, The Netherlands
, June 3–6,
ASME
Paper No. GT2002-30041, pp.
189
195
.10.1115/GT2002-30041
6.
Richter
,
H.
,
Singaraju
,
A.
, and
Litt
,
J. S.
,
2008
, “
Multiplexed Predictive Control of a Large Commercial Turbofan Engine
,”
J. Guid. Control Dyn.
,
31
(
2
), pp.
273
281
.10.2514/1.30591
7.
van Essen
,
H. A.
, and
De Lange
,
H. C.
,
2001
, “
Nonlinear Model Predictive Control Experiments on a Laboratory Gas Turbine Installation
,”
ASME J. Eng. Gas Turbines Power
,
123
(
2
), pp.
347
352
.10.1115/1.1359478
8.
Seldner
,
K.
, and
Cwynar
,
D. S.
,
1978
, “
Procedures for Generation and Reduction of Linear Models of a Turbofan Engine
,”
NASA Technical Report No. 1261
.
9.
Sugiyama
,
N.
,
1994
, “
Derivation of System Matrices From Nonlinear Dynamic Simulation of Jet Engines
,”
J. Guid. Control Dyn.
,
17
(
6
), pp.
1320
1326
.10.2514/3.21350
10.
Ananthkrishnan
,
N.
,
2004
, “
Small-Perturbation Analysis of Airplane Flight Dynamics—A Reappraisal. I: Longitudinal Modes
,”
Proceedings of the AIAA Atmospheric Flight Mechanics Conference
,
Providence, RI
, August 16–19,
AIAA
Paper No. 2004-4950, pp.
643
659
.10.2514/6.2004-4950
11.
RTO Applied Vehicle Technology Panel (AVT) Task Group AVT-036, 2007, “Performance Prediction and Simulation of Gas Turbine Engine Operation for Aircraft, Marine, Vehicular, and Power Generation,” NATO Research and Technology Organization, Neuilly-sur-Seine Cedex, France.
12.
Numerical Propulsion Simulation Software Consortium
,
2006
, “
NPSS User Guide
,”
Wolverine Ventures, Inc.
,
Jupiter, FL
.
13.
Jaw
,
L. C.
,
2009
,
Aircraft Engine Controls: Design, System Analysis, and Health Monitoring
,
AIAA
,
Reston, VA
.
14.
Jones
,
S. M.
,
2007
, “
An Introduction to Thermodynamic Performance Analysis of Aircraft Gas Turbine Engine Cycles Using the Numerical Propulsion System Simulation Code
,”
NASA Report No. NASA/TM-2007-214690
.
15.
Johansen
,
T. A.
,
Hunt
,
K. J.
,
Gawthrop
,
P. J.
, and
Fritz
,
H.
,
1998
, “
Off-Equilibrium Linearisation and Design of Gain-Scheduled Control With Application to Vehicle Speed Control
,”
Control Eng. Pract.
,
6
(
2
), pp.
167
180
.10.1016/S0967-0661(98)00015-X
16.
van Essen
,
H. A.
,
1998
,
Modelling and Model Based Control of Turbomachinery
,
Technische Universiteit Eindhoven
,
Eindhoven, The Netherlands
.
17.
Maciejowski
J.
,
2000
,
Predictive Control With Constraints
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
18.
Ghorbanian
,
K.
, and
Gholamrezaei
,
M.
,
2009
, “
An Artificial Neural Network Approach to Compressor Performance Prediction
,”
Appl. Energy
,
86
(
7–8
), pp.
1210
1221
.10.1016/j.apenergy.2008.06.006
19.
Mattingly
,
J. D.
,
1996
,
Elements of Gas Turbine Propulsion
,
McGraw-Hill
,
New York
.
20.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance
,
2nd ed.
,
Wiley
,
New York
.
21.
Maciejowski
,
J. M.
,
1989
,
Multivariable Feedback Design
,
Addison-Wesley
,
Boston, MA
.
22.
Zhou
,
K.
, and
Doyle
,
J. C.
,
1997
,
Essentials of Robust Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
23.
Vinnicombe
,
G.
,
2001
,
Uncertainty and Feedback: H∞ Loop-Shaping and the ν-Gap Metric
,
World Scientific
,
Singapore
.
24.
Vinnicombe
,
G.
,
1992
,
Measuring Robustness of Feedback Systems
,
Cambridge University
,
Cambridge, UK
.
25.
Zhou
,
K.
,
Doyle
,
J. C.
, and
Glover
,
K.
,
1995
,
Robust and Optimal Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
26.
McFarlane
,
D.
, and
Glover
,
K.
,
1992
, “
A Loop-Shaping Design Procedure Using H∞ Synthesis
,”
IEEE Trans. Autom. Control
,
37
(
6
), pp.
759
769
.10.1109/9.256330
You do not currently have access to this content.