A combustion instability in a combustor typical of aero-engines is analyzed and modeled thanks to a low order Helmholtz solver. A dynamic mode decomposition (DMD) is first applied to the large eddy simulation (LES) database. The mode with the highest amplitude shares the same frequency of oscillation as the experiment (approximately 350 Hz) and it shows the presence of large entropy spots generated within the combustion chamber and convected down to the exit nozzle. With the lowest purely acoustic mode being in the range 650–700 Hz, it is postulated that the instability observed around 350 Hz stems from a mixed entropy/acoustic mode where the acoustic generation associated with the entropy spots being convected throughout the choked nozzle plays a key role. A delayed entropy coupled boundary condition is then derived in order to account for this interaction in the framework of a Helmholtz solver where the baseline flow is assumed to be at rest. When fed with the appropriate transfer functions to model the entropy generation and convection from the flame to the exit, the Helmholtz solver proves able to predict the presence of an unstable mode around 350 Hz, which is in agreement with both the LES and the experiments. This finding supports the idea that the instability observed in the combustor is indeed driven by the entropy/acoustic coupling.

References

References
1.
Rayleigh
,
L.
,
1878
, “
The Explanation of Certain Acoustic Phenomena
,”
Nature (London)
,
18
, pp.
319
321
.10.1038/018319a0
2.
Lieuwen
,
T.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines. Operational Experience, Fundamental Mechanisms and Modeling
, (
Progress in Astronautics and Aeronautics
, Vol. 210), AIAA, Reston, VA, p. 51.
3.
Culick
,
F. E. C.
, and
Kuentzmann
,
P.
,
2006
,
Unsteady Motions in Combustion Chambers for Propulsion Systems
,
NATO Research and Technology Organization
,
Washington, DC
.
4.
Hield
,
P.
,
Brear
,
M.
, and
Jin
,
S.
,
2009
, “
Thermoacoustic Limit Cycles in a Premixed Laboratory Combustor With Open and Choked Exits
,”
Combust. Flame
,
156
(
9
), pp.
1683
1697
.10.1016/j.combustflame.2009.05.011
5.
Huang
,
Y.
, and
Yang
,
V.
,
2004
, “
Bifurcation of Flame Structure in a Lean Premixed Swirl-Stabilized Combustor: Transition From Stable to Unstable Flame
,”
Combust. Flame
,
136
, pp.
383
389
.10.1016/j.combustflame.2003.10.006
6.
Schmitt
,
P.
,
Poinsot
,
T.
,
Schuermans
,
B.
, and
Geigle
,
K. P.
,
2007
, “
Large-Eddy Simulation and Experimental Study of Heat Transfer, Nitric Oxide Emissions and Combustion Instability in a Swirled Turbulent High-Pressure Burner
,”
J. Fluid Mech.
,
570
, pp.
17
46
.10.1017/S0022112006003156
7.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
2nd ed.
,
Edwards
,
Ann Arbor, MI
.
8.
Crocco
,
L.
,
1952
, “
Aspects of Combustion Instability in Liquid Propellant Rocket Motors. Part II
,”
J. Am. Rocket Soc.
,
22
, pp.
7
16
.10.2514/8.4410
9.
Nicoud
,
F.
,
Benoit
,
L.
,
Sensiau
,
C.
, and
Poinsot
,
T.
,
2007
, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J.
,
45
, pp.
426
441
.10.2514/1.24933
10.
Nicoud
,
F.
, and
Wieczorek
,
K.
,
2009
, “
About the Zero Mach Number Assumption in the Calculation of Thermoacoustic Instabilities
,”
Int. J. Spray Combust. Dyn.
,
1
, pp.
67
112
.10.1260/175682709788083335
11.
Marble
,
F. E.
, and
Candel
,
S.
,
1977
, “
Acoustic Disturbances From Gas Nonuniformities Convected Through a Nozzle
,”
J. Sound Vib.
,
55
, pp.
225
243
.10.1016/0022-460X(77)90596-X
12.
Leyko
,
M.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2009
, “
Comparison of Direct and Indirect Combustion Noise Mechanisms in a Model Combustor
,”
AIAA J.
,
47
(
11
), pp.
2709
2716
.10.2514/1.43729
13.
CERFACS
,
2009
, “
AVBP Handbook
,” http://cerfacs.fr/∼avbp/AVBP_V5.X/HANDBOOK.CERFACS
14.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.10.1063/1.870436
15.
Franzelli
,
B.
,
Riber
,
E.
,
Sanjosé
,
M.
, and
Poinsot
,
T.
,
2010
, “
A Two-Step Chemical Scheme for Large-Eddy Simulation of Kerosene-Air Flames
,”
Combust. Flame
,
157
(
7
), pp.
1364
1373
.10.1016/j.combustflame.2010.03.014
16.
Poinsot
,
T.
, and
Lele
,
S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.10.1016/0021-9991(92)90046-2
17.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.10.1017/S0022112010001217
18.
Motheau
,
E.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2012
, “
Using Boundary Conditions to Account For Mean Flow Effects in a Zero Mach Number Acoustic Solver
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
111502
.10.1115/1.4007198
19.
Dowling
,
A. P.
,
1995
, “
The Calculation of Thermoacoustic Oscillations
,”
J. Sound Vib.
,
180
(
4
), pp.
557
581
.10.1006/jsvi.1995.0100
20.
Wolf
,
P.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y.
,
Müller
,
J.-D.
, and
Poinsot
,
T.
,
2012
, “
Acoustic and Large Eddy Simulation Studies of Azimuthal Modes in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
11
), pp.
3398
3413
.10.1016/j.combustflame.2012.06.016
21.
Sensiau
,
C.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2009
, “
A Tool to Study Azimuthal and Spinning Modes in Annular Combustors
,”
Int. J. Aeroacoust.
,
8
(
1
), pp.
57
68
.10.1260/147547209786235037
You do not currently have access to this content.