In this paper, we develop a linear technique that predicts how the stability of a thermoacoustic system changes due to the action of a generic passive feedback device or a generic change in the base state. From this, one can calculate the passive device or base state change that most stabilizes the system. This theoretical framework, based on adjoint equations, is applied to two types of Rijke tube. The first contains an electrically heated hot wire, and the second contains a diffusion flame. Both heat sources are assumed to be compact, so that the acoustic and heat release models can be decoupled. We find that the most effective passive control device is an adiabatic mesh placed at the downstream end of the Rijke tube. We also investigate the effects of a second hot wire and a local variation of the cross-sectional area but find that both affect the frequency more than the growth rate. This application of adjoint sensitivity analysis opens up new possibilities for the passive control of thermoacoustic oscillations. For example, the influence of base state changes can be combined with other constraints, such as that the total heat release rate remains constant, in order to show how an unstable thermoacoustic system should be changed in order to make it stable.

References

References
1.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines
, (Progress in Astronautics and Aeronautics, Vol. 210),
AIAA
, Reston,VA.
2.
Hill
,
D. C.
,
1992
, “
A Theoretical Approach for Analyzing the Restabilization of Wakes
,” NASA Technical Memorandum No. 103858.
3.
Giannetti
,
F.
, and
Luchini
,
P.
,
2007
, “
Structural Sensitivity of the First Instability of the Cylinder Wake
,”
J. Fluid Mech.
,
581
, pp.
167
197
.10.1017/S0022112007005654
4.
Marquet
,
O.
,
Sipp
,
D.
, and
Jacquin
,
L.
,
2008
, “
Sensitivity Analysis and Passive Control of Cylinder Flow
,”
J. Fluid Mech.
,
615
, pp.
221
252
.10.1017/S0022112008003662
5.
Sipp
,
D.
,
Marquet
,
O.
,
Meliga
,
P.
, and
Barbagallo
,
A.
,
2010
, “
Dynamics and Control of Global Instabilities in Open-Flows: A Linearized Approach
,”
ASME Appl. Mech. Rev.
,
63
(
3
), p.
030801
.10.1115/1.4001478
6.
Chandler
,
G. J.
,
Juniper
,
M. P.
,
Nichols
,
J. W.
, and
Schmid
,
P. J.
,
2012
, “
Adjoint Algorithms for the Navier-Stokes Equations in the Low Mach Number Limit
,”
J. Comput. Phys.
,
231
, pp.
1900
1916
.10.1016/j.jcp.2011.11.013
7.
Balasubramanian
,
K.
, and
Sujith
,
R. I.
,
2008
, “
Thermoacoustic Instability in a Rijke Tube: Non-Normality and Nonlinearity
,”
Phys. Fluids
,
20
, p.
044103
.10.1063/1.2895634
8.
Juniper
,
M. P.
,
2011
, “
Triggering in the Horizontal Rijke Tube: Non-Normality, Transient Growth and Bypass Transition
,”
J. Fluid Mech.
,
667
, pp.
272
308
.10.1017/S0022112010004453
9.
Magri
,
L.
, and
Juniper
,
M. P.
,
2013
, “
Sensitivity Analysis of a Time-Delayed Thermo-Acoustic System Via an Adjoint-Based Approach
,”
J. Fluid Mech.
,
719
, pp.
183
202
.10.1017/jfm.2012.639
10.
Burke
,
S. P.
, and
Schumann
,
T. E. W.
,
1928
, “
Diffusion Flames
,”
Combust. Symp.
20
(
10
), pp.
998
1004
.
11.
Tyagi
,
M.
,
Chakravarthy
,
S. R.
, and
Sujith
,
R. I.
,
2007
, “
Unsteady Response of a Ducted Non-Premixed Flame and Acoustic Coupling
,”
Combust. Theory Modell.
,
11
, pp.
205
226
.10.1080/13647830600733481
12.
Tyagi
,
M.
,
Jamadar
,
N.
, and
Chakravarthy
,
S. R.
,
2007
, “
Oscillatory Response of an Idealized Two-Dimensional Diffusion Flame: Analytical and Numerical Study
,”
Combust. Flame
,
149
, pp.
271
285
.10.1016/j.combustflame.2006.12.020
13.
Balasubramanian
,
K.
, and
Sujith
,
R. I.
,
2008
, “
Non-Normality and Nonlinearity in Combustion-Acoustic Interaction in Diffusion Flames
,”
J. Fluid Mech.
,
594
, pp.
29
57
.10.1017/S0022112007008737
14.
Magri
,
L.
, and
Juniper
,
M. P.
, “
Adjoint Sensitivity Analysis of Ducted Diffusion Flames for Control of Thermo-Acoustic Instabilities
,” J. Fluid Mech. (submitted).
15.
Magri
,
L.
, and
Juniper
M. P.
,
2013
, “
Using Direct and Adjoint Eigenfunctions to Find Optimal Control Strategies in Thermo-Acoustics
,”
Non-Normal and Nonlinear Effects in Aero- and Thermoacoustics (n3l) Conference
,
München, Germany
,
June 18–21
.
16.
Magri
,
L.
,
Balasubramanian
,
K.
,
Sujith
,
R. I.
, and
Juniper
,
M. P.
,
2013
, “
Non-Normality in Combustion-Acoustic Interaction in Diffusion Flames: A Critical Revision
,”
J. Fluid Mech.
(submitted).
17.
Heckl
,
M.
,
1990
, “
Nonlinear Acoustic Effects in the Rijke Tube
,”
Acustica
,
72
, pp.
63
71
.
18.
Matveev
,
I.
,
2003
, “
Thermo-Acoustic Instabilities in the Rijke Tube: Experiments and Modeling
,” Ph.D. thesis,
CalTech
, Pasadena, CA.
19.
Stow
,
S. R.
, and
Dowling
,
A. P.
,
2001
, “
Thermoacoustic Oscillations in an Annular Combustor
,” ASME Turbo Expo, Paper No. 2001-GT-0037.
20.
Poinsot
,
T.
, and
Venyante
,
D.
,
2001
,
Theoretical and Numerical Combustion
.
Edwards
,
Ann Arbor, MI
.
21.
Chu
,
B. T.
,
1963
, “
Analysis of a Self-Sustained Thermally Driven Nonlinear Vibration
,”
Phys. Fluids
,
6
(
11
), p.
1638
.10.1063/1.1710997
22.
Rayleigh
,
J. W. S.
,
1878
, “
The Explanation of Certain Acoustical Phenomena
,”
Nature
,
18
, pp.
319
321
.10.1038/018319a0
23.
Shapiro
,
A. H.
,
1953
,
The Dynamics and Thermodynamics of Compressible Fluid Flow
,
Ronald
,
New York
.
24.
Dowling
,
A. P.
, and
Ffowcs Williams
,
J. E.
,
1983
,
Sound and Sources of Sound
,
Ellis Horwood
, Chichester, UK.
25.
Culick
,
F. E. C.
,
2006
, “
Unsteady Motions in Combustion Chambers for Propulsion Systems
,” RTO AGARDograph Paper No. AG-AVT-030.
26.
Illingworth
,
S. J.
,
Waugh
,
I. C.
, and
Juniper
,
M. P.
,
2013
, “
Finding Thermo-acoustic Limit Cycles for a Ducted Burke-Schumann Flame
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
911
920
.10.1016/j.proci.2012.06.017
27.
Nicoud
,
F.
, and
Wieczorek
,
K.
,
2009
, “
About the Zero Mach Number Assumption in the Calculation of Thermo-Acoustic Instabilities
,”
Int. J. Spray Combust. Dyn.
,
1
(
1
), pp.
67
111
.10.1260/175682709788083335
You do not currently have access to this content.