In this paper, a prognostic methodology is applied to gas turbine field data to assess its capability as a predictive tool for degradation effects. On the basis of the recordings of past behavior, the methodology provides a prediction of future performance, i.e., the probability that degradation effects are at an acceptable level in future operations. The analyses carried out in this paper consider two different parameters (power output and compressor efficiency) of three different Alstom gas turbine power plants (gas turbine type GT13E2, GT24, and GT26). To apply the prognostic methodology, site specific degradation threshold values were defined, to identify the time periods with acceptable degradation (i.e., higher-than-threshold operation) and the time periods where maintenance activities are recommended (i.e., lower-than-threshold operation). This paper compares the actual distribution of the time points until the degradation limit is reached (discrete by nature) to the continuously varying distribution of the time points simulated by the probability density functions obtained through the prognostic methodology. Moreover, the reliability of the methodology prediction is assessed for all the available field data of the three gas turbines and for two values of the threshold. For this analysis, the prognostic methodology is applied by considering different numbers of degradation periods for methodology calibration and the accuracy of the next forecasted trends is compared to the real data. Finally, this paper compares the prognostic methodology prediction to a “purely deterministic” prediction chosen to be the average of the past time points of higher-than-threshold operations. The results show that, in almost all cases, the prognostic methodology allows a better prediction than the “purely deterministic” approach for both power and compressor efficiency degradation. Therefore, the prognostic methodology seems to be a robust and reliable tool to predict gas turbine power plant “probabilistic” degradation.

References

References
1.
Orme
,
G. J.
, and
Venturini
,
M.
,
2011
, “
Property Risk Assessment for Power Plants: Methodology, Validation and Application
,”
Energy
,
36
, pp.
3189
3203
.10.1016/j.energy.2011.03.008
2.
Stamatis
,
A.
,
Mathioudakis
,
K.
, and
Papailiou
,
K. D.
,
1990
, “
Adaptive Simulation of Gas Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
,
112
, pp.
168
175
.10.1115/1.2906157
3.
Bettocchi
,
R.
, and
Spina
,
P. R.
,
1999
, “
Diagnosis of Gas Turbine Operating Conditions by Means of the Inverse Cycle Calculation
,” ASME Paper No. 99-GT-185.
4.
Pinelli
,
M.
, and
Venturini
,
M.
,
2002
, “
Application of Methodologies to Evaluate the Health State of Gas Turbines in a Cogenerative Combined Cycle Power Plant
,”
ASME
Paper No. GT2002-30248.10.1115/GT2002-30248
5.
Doel
,
D. L.
,
2003
, “
Development of Baselines, Influence Coefficients and Statistical Inputs for Gas Path Analysis
,”
Gas Turbine Condition Monitoring and Fault Diagnosis
(von Karman Institute Lecture Series No. 2003-01), von Karman Institute, Rhode-Saint-Genèse, Belgium.
6.
Li
,
Y. G.
,
2004
, “
Gas Turbine Diagnosis Using a Fault Isolation Enhanced GPA
,”
ASME
Paper No. GT2004-53571.10.1115/GT2004-53571
7.
Jaw
,
L. C.
,
2005
, “
Recent Advancements in Aircraft Engine Health Management (EHM) Technologies and Recommendations for the Next Step
,”
ASME
Paper No. GT2005-68625.10.1115/GT2005-68625
8.
Verbist
,
M. L.
,
Visser
,
W.P.J.
,
van Buijtenen
,
J. P.
, and
Duivis
,
R.
,
2011
, “
Gas Path Analysis on KLM In-Flight Engine Data
,”
ASME
Paper No. GT2011-45625.10.1115/GT2011-45625
9.
Hindle
,
E.
,
Van Stone
,
R.
,
Brogan
,
C.
,
Ken Dale
,
J. V.
, and
Gibson
,
N.
,
2006
, “
A Prognostic and Diagnostic Approach to Engine Health Management
,”
ASME
Paper No. GT2006-90614.10.1115/GT2006-90614
10.
Roemer
,
M. J.
,
Byington
,
C. S.
,
Kacprzynski
,
G. J.
, and
Vachtsevanos
,
G.
,
2006
, “
An Overview of Selected Prognostic Technologies With Application to Engine Health Management
,”
ASME
Paper No. GT2006-90677.10.1115/GT2006-90677
11.
Puggina
,
N.
, and
Venturini
,
M.
,
2012
, “
Development of a Statistical Methodology for Gas Turbine Prognostics
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
022401
.10.1115/1.4004185
12.
Watson
,
M. J.
,
Smith
,
M. J.
,
Kloda
,
J.
,
Byington
,
C. S.
, and
Semega
,
K.
,
2011
, “
Prognostics and Health Management of Aircraft Engine EMA Systems
,”
ASME
Paper No. GT2011-46537.10.1115/GT2011-46537
13.
Palmé
,
T.
,
Breuhaus
,
P.
,
Assadi
,
M.
,
Klein
,
A.
, and
Kim
,
M.
,
2011
, “
Early Warning of Gas Turbine Failure by Nonlinear Feature Extraction Using an Auto-Associative Neural Network Approach
,”
ASME
Paper No. GT2011-45991.10.1115/GT2011-45991
14.
Li
,
Y. G.
, and
Nilkitsaranont
,
P.
,
2009
, “
Gas Turbine Performance Prognostic for Condition-Based Maintenance
,”
Appl. Energy
,
86
, pp.
2152
2161
.10.1016/j.apenergy.2009.02.011
15.
Saxena
,
A.
,
Celaya
,
J.
,
Saha
,
B.
,
Saha
,
S.
, and
Goebe
,
K.
,
2009
, “
On Applying the Prognostic Performance Metrics
,”
Annual Conference of the Prognostics and Health Management Society
, San Diego, CA, September 27–October 1, Paper No. 039.
16.
Coble
,
J.
, and
Hines
,
J. W.
,
2009
, “
Identifying Optimal Prognostic Parameters From Data: A Genetic Algorithms Approach
,”
Annual Conference of the Prognostics and Health Management Society
, San Diego, CA, September 27–October 1, Paper No. 069.
17.
Nam
,
A.
,
Sharp
,
M.
,
Hines
,
J. W.
, and
Upadhyaya
,
B. R.
,
2012
, “
Bayesian Methods for Successive Transitioning Between Prognostic Types: Lifecycle Prognostics
,” 8th International Topical Meeting on Nuclear Plant Instrumentation, Control and Human Machine Interface Technologies, San Diego, CA, July 22–26, Paper No. 262.
18.
Hepperle
,
N.
,
Therkorn
,
D.
,
Schneider
,
E.
, and
Staudacher
,
S.
,
2011
, “
Assessment of Gas Turbine and Combined Cycle Power Plant Performance Degradation
,”
ASME
Paper No. GT2011-45375.10.1115/GT2011-45375
19.
Borguet
,
S.
, and
Leonard
,
O.
,
2008
, “
A Generalized Likelihood Ratio Test for Adaptive Gas Turbine Health Monitoring
,”
ASME
Paper No. GT2008-50117.10.1115/GT2008-50117
20.
Tarabrin
,
A. P.
,
Bodrov
,
A. I.
,
Schurovsky
,
V. A.
, and
Stalder
,
J. P.
,
1998
, “
Influence of Axial Compressor Fouling on Gas Turbine Unit Performance Based on Different Schemes and With Different Initial Parameters
,” ASME Paper No. 98-GT-416.
21.
Meher-Homji
,
C. B.
,
Chaker
,
M.
, and
Bromley
,
A. F.
,
2009
, “
The Fouling of Axial Flow Compressors—Causes, Effects, Susceptibility End Sensitivity
,”
ASME
Paper No. GT2009-5923910.1115/GT2009-59239.
22.
Schneider
,
E.
,
Demirciogiu
,
S.
,
Franco
,
S.
, and
Therkorn
,
D.
,
2009
, “
Analysis of Compressor On-Line Washing to Optimize Gas Turbine Power Plant Performance
,”
ASME
Paper No. GT2009-59356.10.1115/GT2009-59356
23.
Kurz
,
R.
, and
Brun
,
K.
,
2011
, “
Fouling Mechanisms in Axial Compressors
,”
ASME
Paper No. GT2011-45012.10.1115/GT2011-45012
24.
Igie
,
U.
,
Pilidis
,
P.
,
Fouflias
,
D.
,
Ramsden
,
K.
, and
Lambart
,
P.
,
2011
, “
On-Line Compressor Cascade Washing for Gas Turbine Performance Investigation
,”
ASME
Paper No. GT2011-46210.10.1115/GT2011-46210
25.
Fabbri
,
A.
,
Traverso
,
A.
, and
Cafaro
,
S.
,
2011
, “
Compressor Performance Recovery Systems: a New Thermoeconomic Approach
,”
ASME
Paper No. GT2011-45121.10.1115/GT2011-45121
26.
Melino
,
F.
,
Morini
,
M.
,
Peretto
,
A.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2012
, “
Compressor Fouling Modeling: Relationship Between Computational Roughness and Gas Turbine Operation Time
,”
ASME J. Eng. Gas Turbines Power
,
134
(
5
), p.
052401
.10.1115/1.4004739
27.
Jardine
,
A.K.S.
,
Lin
,
D.
, and
Banjevic
,
D.
,
2006
, “
A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance
,”
Mech. Syst. Signal Process.
,
20
, pp.
1483
1510
.10.1016/j.ymssp.2005.09.012
28.
Heng
,
A.
,
Zhang
,
S.
,
Tan
,
A.C.C.
, and
Mathew
,
J.
,
2009
, “
Rotating Machinery Prognostics: State of the Art, Challenges and Opportunities
,”
Mech. Syst. Signal Process.
,
23
, pp.
724
739
.10.1016/j.ymssp.2008.06.009
29.
Si
,
X. S.
,
Wang
,
W.
,
Hua
,
C. H.
, and
Zhou
,
D. H.
,
2011
, “
Remaining Useful Life Estimation—A Review on the Statistical Data Driven Approaches
,”
Eur. J. Oper. Res.
,
213
, pp.
1
14
.10.1016/j.ejor.2010.11.018
30.
Lipowsky
,
H.
,
Staudacher
,
S.
,
Bauer
,
M.
, and
Schmidt
,
K. J.
,
2009
, “
Application of Bayesian Forecasting to Change Detection and Prognosis of Gas Turbine Performance
,”
ASME
Paper No. GT2009-59447.10.1115/GT2009-59447
31.
Zaluski
,
M.
,
Letourneau
,
S.
,
Bird
,
J.
, and
Yang
,
C.
,
2010
, “
Developing Data Mining-Based Prognostic Models for CF-18 Aircraft
,”
ASME
Paper No. GT2010-22944.10.1115/GT2010-22944
32.
Bryg
,
D. J.
,
Mink
,
G.
, and
Jaw
,
L. C.
,
2008
, “
Combining Lead Functions and Logistic Regression for Predicting Failures on an Aircraft Engine
,”
ASME
Paper No. GT2008-50118.10.1115/GT2008-50118
33.
Heng
,
A.
,
Tan
,
A.C.C.
,
Mathew
,
J.
,
Montgomery
,
N.
,
Banjevic
,
D.
, and
Jardine
,
A.K.S.
,
2009
, “
Intelligent Condition-Based Prediction of Machinery Reliability
,”
Mech. Syst. Signal Process.
,
23
, pp.
1600
1614
.10.1016/j.ymssp.2008.12.006
34.
Tangkuman
,
S.
, and
Yang
,
B. S.
,
2011
, “
Application of Grey Model for Machine Degradation Prognostics
,”
J. Mech. Sci. Technol.
,
25
, pp.
2979
2985
.10.1007/s12206-011-0902-1
35.
Cavarzere
,
A.
, and
Venturini
,
M.
,
2012
, “
Application of Forecasting Methodologies to Predict Gas Turbine Behavior Over Time
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
012401
.10.1115/1.4004184
36.
Venturini
,
M.
, and
Puggina
,
N.
,
2012
, “
Prediction Reliability of a Statistical Methodology for Gas Turbine Prognostics
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
101601
.10.1115/1.4007064
37.
Muller
,
M.
,
Staudacher
,
S.
,
Friedl
,
W. H.
,
Kohler
,
R.
, and
Weisschuh
,
M.
,
2010
, “
Probabilistic Engine Maintenance Modeling for Varying Environmental and Operating Conditions
,”
ASME
Paper No. GT2010-22548.10.1115/GT2010-22548
38.
Pinelli
,
M.
, and
Venturini
,
M.
,
2001
, “
Operating State Historical Data Analysis to Support Gas Turbine Malfunction Detection
,” ASME Paper No. IMECE2001/AES-23665.
39.
Wilcox
,
M.
, and
Brun
,
K.
,
2011
, “
Gas Turbine Inlet Filtration System Life Cycle Cost Analysis
,”
ASME
Paper No. GT2011-46708.10.1115/GT2011-46708
40.
Fishman
,
G. S.
,
1996
,
Monte Carlo: Concepts, Algorithms and Applications
,
Springer-Verlag
,
New York
.
41.
Dubi
,
A.
,
2000
,
Monte Carlo Applications in Systems Engineering
,
Wiley
,
New York
.
42.
Spieler
,
S.
,
Staudacher
,
S.
,
Fiola
,
R.
,
Sahm
,
P.
, and
Weisschuh
,
M.
,
2007
, “
Probabilistic Engine Performance Scatter and Deterioration Modeling
,”
ASME
Paper No. GT2007-27051.10.1115/GT2007-27051
43.
Davison
,
C.
, and
Drummond
,
C.
,
2009
, “
Application of Cost Matrices and Cost Curves to Enhance Diagnostic Health Management Metrics for Gas Turbine Performance
,”
ASME
Paper No. GT2009-59630.10.1115/GT2009-59630
44.
Coble
,
J.
,
Humberstone
,
M.
, and
Hines
,
J. W.
,
2010
, “
Adaptive Monitoring, Fault Detection and Diagnostics, and Prognostics System for the IRIS Nuclear Plant
,”
Annual Conference of the Prognostics and Health Management Society
, Portland, OR, October 10–16, Paper No. 039.
45.
Therkorn
,
D.
,
2005
, “
Remote Monitoring & Diagnostic for Combined Cycle Power Plants
,”
ASME
Paper GT2005-68710.10.1115/GT2005-68710
You do not currently have access to this content.