This paper presents a detailed exergy analysis of homogeneous charge compression ignition (HCCI) engines, including a crank-angle resolved breakdown of mixture exergy and exergy destruction. Exergy analysis is applied to a multizone HCCI simulation including detailed chemical kinetics. The HCCI simulation is validated against engine experiments for ethanol-fueled operation. The exergy analysis quantifies the relative importance of different loss mechanisms within HCCI engines over a range of engine operating conditions. Specifically, four loss mechanisms are studied for their relative impact on exergy losses, including (1) the irreversible combustion process (16.4%–21.5%), (2) physical exergy lost to exhaust gases (12.0%–18.7%), (3) heat losses (3.9%–17.1%), and (4) chemical exergy lost to incomplete combustion (4.7%–37.8%). The trends in each loss mechanism are studied in relation to changes in intake pressure, equivalence ratio, and engine speed as these parameters are directly used to vary engine power output. This exergy analysis methodology is proposed as a tool to inform research and design processes, particularly by identifying the relative importance of each loss mechanism in determining engine operating efficiency.

References

References
1.
Caton
,
J. A.
,
2000
, “
On the Destruction of Availability (Exergy) Due to Combustion Processes—With Specific Application to Internal-Combustion Engines
,”
Energy
,
25
(
11
), pp.
1097
1117
.10.1016/S0360-5442(00)00034-7
2.
Caton
,
J. A.
,
2012
, “
Exergy Destruction During the Combustion Process as Functions of Operating and Design Parameters for a Spark-Ignition Engine
,”
Int. J. Energy Res.
,
36
(
3
), pp.
368
384
.10.1002/er.1807
3.
Edwards
,
K. D.
,
Wagner
,
R. M.
,
Briggs
,
T. E.
, and
Theiss
,
T. J.
,
2011
, “
Defining Engine Efficiency Limits
,”
17th DEER Conference
,
Detroit, MI
, October 3–6.
4.
Khaliq
,
A.
, and
Trivedi
,
S. K.
,
2012
, “
Second Law Assessment of a Wet Ethanol Fuelled HCCI Engine Combined With Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022201
.10.1115/1.4005698
5.
Khaliq
,
A.
,
Trivedi
,
S. K.
, and
Dincer
,
I.
,
2012
, “
Investigation of a Wet Ethanol Operated HCCI Engine Based on First and Second Law Analyses
,”
Appl. Thermal Eng.
,
31
(
10
), pp.
1621
1629
.10.1016/j.applthermaleng.2011.02.001
6.
Amjad
,
A. K.
,
Saray
,
R. K.
,
Mahmoudi
,
S. M. S.
, and
Rahimi
,
A.
,
2011
, “
Availability Analysis of n-Heptane and Natural Gas Blends Combustion in HCCI Engines
,”
Energy
,
36
(
12
), pp.
6900
6909
.10.1016/j.energy.2011.09.046
7.
Aceves
,
S. M.
,
Flowers
,
D. L.
,
Martinez-Frias
,
J.
,
Smith
,
J. R.
,
Westbrook
,
C.
,
Pitz
,
W.
,
Dibble
,
R.
,
Wright
,
J. F.
,
Akinyemi
,
W. C.
, and
Hessel
,
R. P.
,
2001
, “
A Sequential Fluid-Mechanic Chemical-Kinetic Model of Propane HCCI Combustion
,”
SAE
Technical Paper No. 2001-01-1027.10.4271/2001-01-1027
8.
Woschni
,
G.
,
1967
, “
A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine
,”
SAE
Technical Paper No. 670931.10.4271/670931
9.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engines Fundamentals
,
McGraw-Hill
,
New York
, p.
145
.
10.
Marinov
,
N. M.
,
1999
, “
A Detailed Chemical Kinetic Model for High Temperature Ethanol Oxidation
,”
Int. J. Chem. Kinet.
,
31
, pp.
183
220
.10.1002/(SICI)1097-4601(1999)31:3<183::AID-KIN3>3.0.CO;2-X
11.
Saxena
,
S.
,
Chen
,
J.-Y.
, and
Dibble
,
R.
,
2011
, “
Maximizing Power Output in an Automotive Scale Multi-Cylinder Homogeneous Charge Compression Ignition (HCCI) Engine
,”
SAE
Technical Paper No. 2011-01-0907.10.4271/2011-01-0907
12.
Saxena
,
S.
,
2011
, “
Maximizing Power Output in Homogeneous Charge Compression Engines and Enabling Effective Control of Combustion Timing
,” Ph.D. dissertation, University of California-Berkeley, Berkeley, CA.
13.
Saxena
,
S.
,
Schneider
,
S.
,
Aceves
,
S.
, and
Dibble
,
R.
,
2012
, “
Wet Ethanol in HCCI Engines With Exhaust Heat Recovery to Improve the Energy Balance of Ethanol Fuels
,”
Appl. Energy
,
98
, pp.
448
457
.10.1016/j.apenergy.2012.04.007
14.
Bedoya
, I
. D.
,
Saxena
,
S.
,
Cadavid
,
F. J.
, and
Dibble
,
R. W.
,
2012
, “
Exploring Strategies for Reducing High Intake Temperature Requirements and Allowing Optimal Operational Conditions in a Biogas Fueled HCCI Engine for Power Generation
,”
ASME J. Eng. Gas Turbines Power
,
134
(
7
), p.
072806
.10.1115/1.4006075
15.
Bedoya
, I
. D.
,
Cadavid
,
F.
,
Saxena
,
S.
,
Dibble
,
R.
,
Aceves
,
S.
, and
Flowers
,
D.
,
2012
, “
A Sequential Chemical Kinetics-CFD-Chemical Kinetics Methodology to Predict HCCI Combustion and Main Emissions
,”
SAE
Technical Paper No. 2012-01-1119.10.4271/2012-01-1119
16.
Flowers
,
D. L.
,
Aceves
,
S. M.
,
Martinez-Frias
,
J.
, and
Dibble
,
R. W.
,
2002
, “
Prediction of Carbon Monoxide and Hydrocarbon Emissions in Iso-Octane HCCI Engine Combustion Using Multizone Simulations
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
687
694
.10.1016/S1540-7489(02)80088-8
17.
Flowers
,
D. L.
,
Aceves
,
S. M.
,
Martinez-Frias
,
J.
,
Hessel
,
R.
, and
Dibble
,
R. W.
,
2003
, “
Effect of Mixing on Hydrocarbon and Carbon Monoxide Emissions Prediction for Isooctane HCCI Engine Combustion Using a Multi-Zone Detailed Chemical Kinetics Solver
,”
SAE
Paper No. 2003-01-1821.10.4271/2003-01-1821
18.
Cheng
,
W. K.
,
Summers
,
T.
, and
Collings
,
N.
,
1998
, “
The Fast-Response Flame Ionization Detector
,”
Prog. Energy Combust. Sci.
,
24
(
2
), pp.
89
124
.10.1016/S0360-1285(97)00025-7
19.
Bejan
,
A.
,
2006
,
Advanced Engineering Thermodynamics
,
John Wiley
,
Hoboken, NJ
.
20.
Szargut
,
J.
,
Morris
,
D. R.
, and
Steward
,
F. R.
,
1988
,
Exergy Analysis of Thermal, Chemical, and Metallurgical Processes
,
Hemisphere
,
New York
.
21.
Sjöberg
,
M.
, and
Dec
,
J. E.
,
2010
, “
Ethanol Autoignition Characteristics and HCCI Performance for Wide Ranges of Engine Speed, Load and Boost
”,
SAE
Technical Paper No. 2010-01-0338.10.4271/2010-01-0338
22.
Dec
,
J. E.
,
Yang
,
Y.
, and
Dronniou
,
N.
,
2012
, “
Improving Efficiency and Using E10 for Higher Loads in Boosted HCCI Engines
,”
SAE
Technical Paper No. 2012-01-1107.10.4271/2012-01-1107
23.
Saxena
,
S.
, and
Bedoya
,
I. D.
,
2013
, “
Fundamental Phenomena Affecting Low Temperature Combustion and HCCI Engines, High Load Limits and Strategies for Extending These Limits
,”
Progress in Energy and Combustion Science, JPECS629
(in press).10.1016/j.pecs.2013.05.002
24.
Dunbar
,
W. R.
, and
Lior
,
N.
,
1994
, “
Sources of Combustion Irreversibility
,”
Combust. Sci. Technol.
,
103
(
1–6
), pp.
41
61
.10.1080/00102209408907687
You do not currently have access to this content.