Large-eddy simulation (LES) is applied to turbulent spray combustion fields in a subscale (1/2) aircraft jet engine combustor with an air-blast type swirl fuel nozzle and validity is examined by comparing with measurements. In the LES, Jet-A is used as liquid fuel, and individual droplet motion is tracked in a Lagrangian manner with a parcel model. As a turbulent combustion model, the extended flamelet/progress-variable approach, in which heat transfer between droplets and ambient gas including radiation and heat loss from walls can be taken into account, is employed. A detailed chemistry mechanism of Jet-A with 1537 reactions and 274 chemical species is used. The radiative heat transfer is computed by the discrete ordinate (DO) method. The equivalence ratio ranges from 0.91 to 1.29. The comparisons of the predicted droplet velocity and size, gaseous temperature, NO, and soot emissions with the measurements show that the present LES is capable of capturing the general features of the turbulent spray combustion fields in the subscale (1/2) aircraft jet engine combustor.

References

1.
Moin
,
P.
, and
Apte
,
S. V.
,
2006
, “
Large-Eddy Simulation of Realistic Gas Turbine Combustors
,”
AIAA J.
,
44
, pp.
698
708
.10.2514/1.14606
2.
Boileau
,
M.
,
Pascaud
,
S.
,
Riber
,
E.
,
Cuenot
,
B.
,
Gicquel
,
L. Y. M.
,
Poinsot
T. J.
, and
Cazalens
M.
,
2008
, “
Investigation of Two-Fluid Methods for Large Eddy Simulation of Spray Combustion in Gas Turbines
,”
Flow, Turbul. Combust.
,
80
, pp.
291
321
.10.1007/s10494-007-9123-1
3.
Patel
,
N.
, and
Menon
,
S.
,
2008
, “
Simulation of Spray-Turbulence-Flame Interactions in a Lean Direct Injection Combustor
,”
Combust. Flame
,
153
, pp.
228
257
.10.1016/j.combustflame.2007.09.011
4.
Ihme
,
M.
, and
Pitsch
,
H.
,
2008
, “
Modeling of Radiation and Nitric Oxide Formation in Turbulent Nonpremixed Flames Using a Flamelet/Progress Variable Formulation
,”
Phys. Fluids
,
20
, p.
055110
.10.1063/1.2911047
5.
Fujita
,
A.
,
Watanabe
,
H.
,
Kurose
,
R.
, and
Komori
,
S.
,
2013
, “
Two-Dimensional Direct Numerical Simulation of Spray Flames. Part 1: Effects of Equivalence Ratio, Fuel Droplet Size and Radiation, and Validity of Flamelet Model
,”
Fuel
,
104
, pp.
515
525
.10.1016/j.fuel.2012.08.044
6.
Kitano
,
T.
,
Nakatani
,
T.
,
Kurose
,
R.
, and
Komori
,
S.
,
2013
, “
Two-Dimensional Direct Numerical Simulation of Spray Flames. Part 2: Effects of Ambient Pressure and Lift, and Validity of Flamelet Model
,”
Fuel
,
104
, pp.
526
535
.10.1016/j.fuel.2012.08.043
7.
Pitsch
,
H.
,
2009
, private communication.
8.
Watanabe
,
H.
,
Kurose
,
R.
,
Komori
,
S.
, and
Pitsch
,
H.
,
2008
, “
Effects of Radiation on Spray Flame Characteristics and Soot Formation
,”
Combust. Flame
,
152
, pp.
2
13
.10.1016/j.combustflame.2007.07.021
9.
Fiveland
,
W. A.
,
1988
, “
Three-Dimensional Radiative Heat Transfer Solutions by the Discrete-Ordinates Method
,”
J. Thermophys.
,
2
, pp.
309
316
.10.2514/3.105
10.
Kurose
,
R.
,
Makino
,
H.
,
Komori
,
S.
,
Nakamura
,
M.
,
Akamatsu
,
F.
, and
Katsuki
,
M.
,
2003
, “
Effects of Outflow From the Surface of a Sphere on Drag, Shear Lift, and Scalar Diffusion
,”
Phys. Fluids
,
15
, pp.
2338
2351
.10.1063/1.1591770
11.
Nakamura
,
M.
,
Akamatsu
,
F.
,
Kurose
,
R.
, and
Katsuki
,
M.
,
2005
, “
Combustion Mechanism of Liquid Fuel Spray in a Gaseous Flame
,”
Phys. Fluids
,
17
, p.
123301
.10.1063/1.2140294
12.
Moin
,
P.
,
Squires
,
K.
,
Cabot
,
W.
, and
Lee
,
S.
,
1991
, “
A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport
,”
Phys. Fluids
, A
3
, pp.
2746
2757
.10.1063/1.858164
13.
Pierce
,
C. D.
, and
Moin
,
P.
,
2004
, “
Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion
,”
J. Fluid Mech.
,
504
, pp.
73
97
.10.1017/S0022112004008213
14.
Pitsch
,
H.
,
1998
,
A C++ Computer Program for 0-D Combustion and 1-D Laminar Flame Calculation, RWTH Aachen, Aachen
, Germany.
15.
Watanabe
,
H.
,
Kurose
,
R.
,
Hwang
,
S. M.
, and
Akamatsu
F.
,
2007
, “
Characteristics of Flamelets in Spray Flames Formed in a Laminar Counterflow
,”
Combust. Flame
,
148
, pp.
234
248
.10.1016/j.combustflame.2006.09.006
16.
Baba
,
Y.
, and
Kurose
,
R.
,
2008
, “
Analysis and Flamelet Modelling for Spray Combustion
,”
J. Fluid Mech.
,
612
, pp.
45
79
.10.1017/S0022112008002620
17.
Miller
,
R. S.
,
Harstad
,
K.
, and
Bellan
,
J.
,
1998
, “
Evaluation of Equilibrium and Non-Equilibrium Evaporation Models for Many-Droplet Gas-Liquid Flow Simulations
,”
Int. J. Multiphase Flow
,
24
, pp.
1025
1055
.10.1016/S0301-9322(98)00028-7
18.
Miller
,
R. S.
, and
Bellan
,
J.
,
1999
, “
Direct Numerical Simulation of a Confined Three-Dimensional Gas Mixing Layer With One Evaporating Hydrocarbon-Droplet-Laden Stream
,”
J. Fluid Mech.
,
384
, pp.
293
338
.10.1017/S0022112098004042
19.
Kuo
,
K. K. Y.
,
1986
,
Principles of Combustion
,
John Wiley and Sons
,
New York
.
20.
Hayashi
,
J.
,
Watanabe
,
H.
,
Kurose
,
R.
, and
Akamatsu
,
F.
,
2011
, “
Effects of Fuel Droplet Size on Soot Formation in Spray Flames Formed in a Laminar Counterflow
,”
Combust. Flame
,
158
, pp.
2559
2568
.10.1016/j.combustflame.2011.05.015
21.
Watanabe
,
H.
,
Tanno
,
K.
,
Baba
,
Y.
,
Kurose
,
R.
,
Komori
,
S.
,
2009
, “
Large-Eddy Simulation of Coal Combustion in a Pulverized Coal Combustion Furnace With a Complex Burner. Turbulence
,”
Heat and Mass Transfer 6
,
K.
Hanjalić
,
Y.
Nagano
, and
S.
Jakirlić
, eds.,
Begell House Inc.
,
New York
, pp.
1027
1030
.
22.
Kurose
,
R.
,
Anami
,
M.
,
Fujita
,
A.
, and
Komori
,
S.
,
2012
Numerical Simulation of Flow Past a Heated/Cooled Sphere
,”
J. Fluid Mech.
,
692
, pp.
332
346
.10.1017/jfm.2011.517
23.
Muto
,
M.
,
Tsubokura
,
M.
, and
Oshima
,
N.
,
2012
, “
Negative Magnus Lift on a Rotating Sphere at Around the Critical Reynolds Number
,”
Phys. Fluids
,
24
,
014102
.10.1063/1.3673571
24.
Moriai
,
H.
,
Wang
,
P.
,
Hayashi
,
J.
,
Nakatsuka
,
N.
,
Akamatsu
,
F.
,
Kurose
,
R.
, and
Komori
,
S.
,
2009
, “
Recirculation Behavior in Subscale Gas Turbine Combustor
,”
Proceedings of the 7th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics (ExHFT-7), Krakow, Poland, June 28–July 3, MT-22 (CDROM)
.
25.
Moriai
,
H.
,
Hayashi
,
J.
,
Wang
,
P.
,
Nakatsuka
,
N.
,
Akamatsu
,
F.
,
Kurose
,
R.
, and
Komori
,
S.
,
2011
, “
Optical Measurement of Spray Combustion Fields in a Sub-Scale Model for Aircraft Gas Turbine Engine Combustor
,”
J. Gas Turbine Soc. Jpn.
,
39
, pp.
125
130
.
You do not currently have access to this content.