Boiling heat transfer (BHT) and critical heat flux (CHF) performance were experimentally studied for saturated pool boiling of water-based nanofluids. In present experimental works, copper heaters of 20 mm diameter with titanium-oxide (TiO2) nanocoated surface were produced in pool boiling of nanofluid. Experiments were performed in both upward and downward facing nanofluid coated heater surface. TiO2 nanoparticle was used with concentration ranging from 0.004 until 0.4 kg/m3 and boiling time of tb = 1, 3, 10, 20, 40, and 60 mins. Distilled water was used to observed BHT and CHF performance of different nanofluids boiling time and concentration configurations. Nucleate boiling heat transfer observed to deteriorate in upward facing heater, however; in contrast effect of enhancement for downward. Maximum enhancements of CHF for upward- and downward-facing heater are 2.1 and 1.9 times, respectively. Reduction of mean contact angle demonstrate enhancement on the critical heat flux for both upward-facing and downward-facing heater configuration. However, nucleate boiling heat transfer shows inconsistency in similar concentration with sequence of boiling time. For both downward- and upward-facing nanocoated heater's BHT and CHF, the optimum configuration denotes by C = 400 kg/m3 with tb = 1 min which shows the best increment of boiling curve trend with lowest wall superheat ΔT = 25 K and critical heat flux enhancement of 2.02 times.

References

References
1.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” Developments and Applications of Non-Newtonian Flows: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, November 12–17, Vol. 231,
D. A.
Siginer
, and
H. P.
Wang
, eds., ASME, New York, pp.
99
103
.
2.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
,
2003
, “
Pool Boiling Characteristics of Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
46
, pp.
851
862
.10.1016/S0017-9310(02)00348-4
3.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
,
2003
, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
83
(
16
), pp.
3374
.10.1063/1.1619206
4.
Vassallo
,
P.
,
Kumar
,
R.
, and
Amico
,
S. D.
,
2004
, “
Pool Boiling Heat Transfer Experiments in Silica–Water Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
47
, pp.
407
411
.10.1016/S0017-9310(03)00361-2
5.
Bang
,
I. C.
, and
Chang
,
S. H.
,
2005
, “
Boiling Heat Transfer Performance and Phenomena of Al2O3–Water Nano-Fluids From a Plain Surface in a Pool
,”
Int. J. Heat Mass Transfer
,
48
, pp.
2407
2419
.10.1016/j.ijheatmasstransfer.2004.12.047
6.
Park
,
K.
, and
Jung
,
D.
,
2007
, “
Enhancement of Nucleate Boiling Heat Transfer Using Carbon Nanotubes
,”
Int. J. Heat Mass Transfer
,
50
(
21–22
), pp.
4499
4502
.10.1016/j.ijheatmasstransfer.2007.03.012
7.
Soltani
,
S.
,
Etemad
,
S. G.
, and
Thibault
,
J.
,
2010
, “
Pool Boiling Heat Transfer of Non-Newtonian Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
37
(
1
), pp.
29
33
.10.1016/j.icheatmasstransfer.2009.08.005
8.
Huang
,
C.-K.
,
Lee
,
C.-W.
, and
Wang
,
C.-K.
,
2011
, “
Boiling Enhancement by TiO2 Nanoparticle Deposition
,”
Int. J. Heat Mass Transfer
,
54
, pp.
4895
4903
.10.1016/j.ijheatmasstransfer.2011.07.001
9.
Kim
,
H.
,
Kim
,
J.
, and
Kim
,
M.
,
2007
, “
Experimental Studies on CHF Characteristics of Nano-Fluids at Pool Boiling
,”
Int. J. Multiphase Flow
,
33
(
7
), pp.
691
706
.10.1016/j.ijmultiphaseflow.2007.02.007
10.
Kim
,
H.
,
Kim
,
J.
, and
Kim
,
M.
,
2006
, “
Effect of Nanoparticles on CHF Enhancement in Pool Boiling of Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
49
(
25–26
), pp.
5070
5074
.10.1016/j.ijheatmasstransfer.2006.07.019
11.
Hegde
,
R.
,
Rao
,
S. S.
, and
Reddy
,
R. P.
,
2010
, “
Critical Heat Flux Enhancement in Pool Boiling Using Alumina Nanofluids
,”
Heat Trans. Asian Res.
,
39
(
5
), pp.
323
331
10.1002/htj.20301.
12.
Jeong
,
Y.
,
Chang
,
W.
, and
Chang
,
S.
,
2008
, “
Wettability of Heated Surfaces Under Pool Boiling Using Surfactant Solutions and Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
3025
3031
.10.1016/j.ijheatmasstransfer.2007.09.023
13.
Peng
,
H.
,
Ding
,
G.
, and
Hu
,
H.
,
2011
, “
Effect of Surfactant Additives on Nucleate Pool Boiling Heat Transfer of Refrigerant-Based Nanofluid
,”
Exp. Therm. Fluid Sci.
,
35
(
6
), pp.
960
970
.10.1016/j.expthermflusci.2011.01.016
14.
Das
,
S. K.
,
2003
, “
Pool Boiling of Nano-Fluids on Horizontal Narrow Tubes
,”
Int. J. Multiphase Flow
,
29
(
8
), pp.
1237
1247
.10.1016/S0301-9322(03)00105-8
15.
Forrest
,
E.
,
Williamson
,
E.
,
Buongiorno
,
J.
,
Hu
,
L.-W.
,
Rubner
,
M.
, and
Cohen
,
R.
,
2010
), “
Augmentation of Nucleate Boiling Heat Transfer and Critical Heat Flux Using Nanoparticle Thin-Film Coatings
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
58
67
.10.1016/j.ijheatmasstransfer.2009.10.008
16.
Trisaksri
,
V.
, and
Wongwises
,
S.
,
2009
, “
Nucleate Pool Boiling Heat Transfer of TiO2–R141b Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1582
1588
.10.1016/j.ijheatmasstransfer.2008.07.041
17.
Suriyawong
,
A.
, and
Wongwises
,
S.
,
2010
, “
Nucleate Pool Boiling Heat Transfer Characteristics of TiO2–Water Nanofluids at Very Low Concentrations
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
992
999
.10.1016/j.expthermflusci.2010.03.002
18.
Buongiorno
,
J.
,
Hu
,
L. W.
,
Apostolakis
,
G.
,
Hannink
,
R.
,
Lucas
,
T.
, and
Chupin
,
A.
,
2009
, “
A Feasibility Assessment of the Use of Nanofluids to Enhance the In-Vessel Retention Capability in Light-Water Reactors
,”
Nucl. Eng. Des.
,
239
(
5
),
941
948
.10.1016/j.nucengdes.2008.06.017
19.
Howard
,
A. H.
, and
Mudawar
,
I.
,
1999
, “
Orientation Effects on Pool Boiling Critical Heat Flux (CHF) and Modeling of CHF for Near-Vertical Surfaces
,”
Int. J. Heat Mass Transfer
,
42
(
9
), pp.
1665
1688
.10.1016/S0017-9310(98)00233-6
20.
Okawa
,
T.
,
Masahiro
,
A.
, and
Takahito
,
K.
,
2010
, “
Time Scale Required for CHF Enhancement in Titanium Dioxide-Water Nanofluid
,”
The Seventh Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety
, Chuncheon, Korea, November 14–17, Paper No. NTHAS7, p.
N7P0008
.
You do not currently have access to this content.