The current research focuses on creating a homogeneous charge compression ignition (HCCI) fuel index suitable for comparing different fuels for HCCI operation. One way to characterize a fuel is to use the auto-ignition temperature (AIT). The AIT can be extracted from the pressure trace. Another potentially interesting parameter is the amount of low temperature heat release (LTHR) that is closely connected to the ignition properties of the fuel. The purpose of this study was to map the AIT and the amount of LTHR of different oxygenated reference fuels in HCCI combustion at different cylinder pressures. Blends of n-heptane, iso-octane, and ethanol were tested in a cooperative fuels research (CFR) engine with a variable compression ratio. Five different inlet air temperatures ranging from 50 °C to 150 °C were used to achieve different cylinder pressures and the compression ratio was changed accordingly to keep a constant combustion phasing, CA50, of 3 ± 1 deg after top dead center (TDC). The experiments were carried out in lean operation with a constant equivalence ratio of 0.33 and with a constant engine speed of 600 rpm. The amount of ethanol needed to suppress the LTHR from different primary reference fuels (PRFs) was evaluated. The AIT and the amount of LTHR for different combinations of n-heptane, iso-octane, and ethanol were charted.

References

References
1.
Liu
,
H.
,
Yao
,
M.
,
Zhang
,
B.
, and
Zheng
,
Z.
,
2009
, “
Influence of Fuel and Operating Conditions on Combustion Characteristics of a Homogenous Charge Compression Ignition Engine
,”
Energy Fuels
,
23
, pp.
1422
1430
.10.1021/ef800950c
2.
Kalghatgi
,
G. T.
,
2005
, “
Auto-Ignition Quality of Practical Fuels and Implications for Fuel Requirements of Future SI and HCCI Engines
,”
SAE
Paper No. 2005-01-0239.10.4271/2005-01-0239
3.
Shibata
,
G.
, and
Urushihara
,
T.
,
2007
, “
Auto-Ignition Characteristics of Hydrocarbons and Development of HCCI Fuel Index
,”
SAE
Paper No. 2007-01-0220.10.4271/2007-01-0220
4.
Shibata
,
G.
, and
Oyama
,
K.
,
2005
, “
Correlation of Low Temperature Heat Release With Fuel Composition and HCCI Engine Combustion
,”
SAE
Paper No. 2005-01-0138.10.4271/2005-01-0138
5.
Tanaka
,
S.
,
Ayala
,
F.
,
Keck
,
J. C.
, and
Heywood
,
J. B.
,
2003
, “
Two-Stage Ignition in HCCI Combustion and HCCI Control by Fuels and Additives
,”
Combust. Flame
,
132
, pp.
219
239
.10.1016/S0010-2180(02)00457-1
6.
Aroonsriopon
,
T.
,
Sohm
,
V.
,
Werner
,
P.
,
Foster
,
D. E.
,
Morikawa
,
T.
, and
Iida
,
M.
,
2002
, “
An Investigaton Into the Effect of Fuel Composition on HCCI Combustion Characteristics
,”
SAE
Paper No. 2002-01-2830.10.4271/2002-01-2038
7.
Warnatz
,
J.
,
Maas
,
U.
, and
Dibble
,
R. W.
,
2006
,
Combustion Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation
,
Springer
,
Berlin
.
8.
Hosseini
,
V.
,
Neill
,
W. S.
, and
Chippior
,
W. L.
,
2009
, “
Influence of Engine Speed on HCCI Combustion Characteristics Using Dual-Stage Autoignition Fuels
,”
SAE
Paper No. 2009-01-1107.10.4271/2009-01-1107
9.
Silke
,
E. J.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
,
Sjöberg
,
M.
, and
Dec
,
J. E.
,
2008
, “
Understanding the Chemical Effects of Increased Boost Pressure Under HCCI Conditions
,
SAE
Paper No. 2008-01-0019.10.4271/2008-01-0019
10.
Sjöberg
,
M.
, and
Dec
,
J. E.
,
2011
, “
Effects of EGR and Its Constituents on HCCI Autoignition of Ethanol
,”
Proc. Combust. Inst.
,
33
, pp.
3031
3038
.10.1016/j.proci.2010.06.043
11.
Sjöberg
,
M.
, and
Dec
,
J. E.
,
2007
, “
EGR and Intake Boost for Managing HCCI Low-Temperature Heat Release Over Wide Ranges of Engine Speed
,”
SAE
Paper No. 2007-01-0051.10.4271/2007-01-0051
12.
Andrae
,
J. C. G.
, and
Head
,
R. A.
,
2009
, “
HCCI Experiments With Gasoline Surrogate Fuels Modeled by a Semidetailed Chemical Kinetic Model
,”
Combust. Flame
,
156
, pp.
842
851
.10.1016/j.combustflame.2008.10.002
13.
Truedsson
,
I.
,
Tuner
,
M.
,
Johansson
,
B.
, and
Cannella
,
B.
,
2012
, “
Pressure Sensitivity of HCCI Auto-Ignition Temperature for Primary Reference Fuels
,”
SAE
Paper No. 2012-01-1128.10.4271/2012-01-1128
14.
,
X.
,
Ji
,
L.
,
Zu
,
L.
,
Hou
,
Y.
,
Huang
,
C.
, and
Huang
,
Z.
,
2007
, “
Experimental Study and Chemical Analysis of n-Heptane Homogeneous Charge Compression Ignition Combustion With Port Injection of Reaction Inhibitors
,”
Combust. Flame
,
149
, pp.
261
270
.10.1016/j.combustflame.2007.01.002
15.
Floweday
,
G.
,
2010
, “
A New Functional Global Auto-Ignition Model for Hydrocarbon Fuels—Part 1 of 2: An Investigation of Fuel Auto-Ignition Behaviour and Existing Global Models
,”
SAE
Paper No. 2010-01-2161.10.4271/2010-01-2161
16.
Machado
,
G. B.
,
Barros
,
J. E. M.
,
Braga
,
S. L.
,
Braga
,
C. V. M.
,
Oliviera
,
E. J.
,
Silva
,
A. H. M. F. T.
, and
Carvalho
,
L. O.
,
2011
, “
Investigation on Surrogate Fuels for High-Octane Oxygenated Gasolines
,”
Fuel
,
90
, pp.
640
646
.10.1016/j.fuel.2010.10.024
17.
Pitz
,
W. J.
,
Cernansky
,
N. P.
,
Dryer
,
F. L.
,
Egolfopoulos
,
F. N.
,
Farrell
,
J. T.
,
Friend
,
D. G.
, and
Pitsch
,
H.
,
2007
, “
Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels
,”
SAE
Paper No. 2007-01-0175.10.4271/2007-01-0175
18.
Yates
,
A.
,
Bell
,
A.
, and
Swarts
,
A.
,
2010
, “
Insights Relating to the Autoignition Characteristics of Alcohol Fuels
,”
Fuel
,
89
, pp.
83
93
.10.1016/j.fuel.2009.06.037
19.
SAE J1297
,
2002
, “
Surface Vehicle Information Report, Alternative Automotive Fuels
,” SAE Standard No. J1297.
You do not currently have access to this content.