A gas path diagnostic method based on sparse Bayesian learning is presented. Most gas path diagnostic problems present the case where there are fewer measurements than health parameters. In addition, the measurement readings can be faulty themselves and need to be determined, which further increases the number of unknown variables. The number of unknown variables exceeds the number of measurements in gas path diagnostics, making the estimation problem underdetermined. For gradual deterioration, it is common to apply a weighted-least-square algorithm to estimate the component health parameters at the same time sensor errors are being determined. However, this algorithm may underestimate the real problem and attribute parts of it to other component faults for accidental single fault events. The accidental single fault events impact at most one or two component(s). This translates mathematically into the search for a sparse solution. In this paper, we proposed a new gas path diagnostic method based on sparse Bayesian learning favoring sparse solutions for accidental single fault events. The sparse Bayesian learning algorithm is applied to a heavy-duty gas turbine considering component faults and sensor biases to demonstrate its capability and improved performance in gas path diagnostics.

References

References
1.
Urban
,
L. A.
,
1972
, “
Gas Path Analysis Applied to Turbine Engine Condition Monitoring
,” AIAA/SAE 8th Joint Propulsion Specialist Conference, New Orleans, LA, November 29–December 2,
AIAA
Paper No. 72-1082.10.2514/6.1972-1082
2.
Doel
,
D. L.
,
1994
, “
An Assessment of Weighted-Least-Squares-Based Gas Path Analysis
,”
ASME J. Eng. Gas Turbines Power
,
116
, pp.
366
373
.10.1115/1.2906829
3.
Doel
,
D.
,
1994
, “
TEMPER—A Gas-Path Analysis Tool for Commercial Jet Engines
,”
ASME J. Eng. Gas Turbines Power
,
116
, pp.
82
89
.10.1115/1.2906813
4.
Doel
,
D. L.
,
2003
, “
Interpretation of Weighted-Least-Squares Gas Path Analysis Results
,”
ASME J. Eng. Gas Turbines Power
,
125
, pp.
624
632
.10.1115/1.1582492
5.
Stamatis
,
A.
,
Mathioudakis
,
K.
, and
Papailiou
,
K.
,
1990
, “
Adaptive Simulation of Gas Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
,
112
, pp.
168
175
.10.1115/1.2906157
6.
Stamatis
,
A.
,
Mathioudakis
,
K.
,
Papailiou
,
K.
, and
Smith
,
M.
,
1990
, “
Gas Turbine Component Fault Identification by Means of Adaptive Performance Modeling
,” ASME Paper No. 90-GT-376.
7.
Sampath
,
S.
,
Gulati
,
A.
, and
Singh
,
R.
,
2002
, “
Fault Diagnostics Using Genetic Algorithm for Advanced Cycle Gas Turbine
,”
ASME
Paper No. GT2002-30021.10.1115/GT2002-30021
8.
Sampath
,
S.
, and
Singh
,
R.
,
2006
, “
An Integrated Fault Diagnostics Model Using Genetic Algorithm and Neural Networks
,”
ASME J. Eng. Gas Turbines Power
,
128
, pp.
49
56
.10.1115/1.1995771
9.
Li
,
Y.
,
2008
, “
A Genetic Algorithm Approach to Estimate Performance Status of Gas Turbines
,”
ASME
Paper No. GT2008-50175.10.1115/GT2008-50175
10.
Sugiyama
,
N.
,
2000
, “
System Identification of Jet Engines
,”
ASME J. Eng. Gas Turbines Power
,
122
, pp.
19
26
.10.1115/1.483172
11.
Volponi
,
A.
,
DePold
,
H.
,
Ganguli
,
R.
, and
Daguang
,
C.
,
2003
, “
The Use of Kalman Filter and Neural Network Methodologies in Gas Turbine Performance Diagnostics: A Comparative Study
,”
ASME J. Eng. Gas Turbines Power
,
125
, pp.
917
924
.10.1115/1.1419016
12.
Lu
,
P. J.
,
Zhang
,
M. C.
,
Hsu
,
T. C.
, and
Zhang
,
J.
,
2001
, “
An Evaluation of Engine Faults Diagnostics Using Artificial Neural Networks
,”
ASME J. Eng. Gas Turbines Power
,
123
, pp.
340
346
.10.1115/1.1362667
13.
Romesis
,
C.
, and
Mathioudakis
,
K.
,
2003
, “
Setting up of a Probabilistic Neural Network for Sensor Fault Detection Including Operation With Component Faults
,”
ASME J. Eng. Gas Turbines Power
,
125
, pp.
634
641
.10.1115/1.1582493
14.
Bettocchi
,
R.
,
Pinelli
,
M.
,
Spina
,
P.
, and
Venturini
,
M.
,
2007
, “
Artificial Intelligence for the Diagnostics of Gas Turbines—Part I: Neural Network Approach
,”
ASME J. Eng. Gas Turbines Power
,
129
, pp.
711
719
.10.1115/1.2431391
15.
Romessis
,
C.
, and
Mathioudakis
,
K.
,
2006
, “
Bayesian Network Approach for Gas Path Fault Diagnosis
,”
ASME J. Eng. Gas Turbines Power
,
128
, pp.
64
72
.10.1115/1.1924536
16.
Lee
,
Y. K.
,
Mavris
,
D. N.
,
Volovoi
,
V. V.
,
Yuan
,
M.
, and
Fisher
,
T.
,
2010
, “
A Fault Diagnosis Method for Industrial Gas Turbines Using Bayesian Data Analysis
,”
ASME J. Eng. Gas Turbines Power
,
132
, p.
041602
.10.1115/1.3204508
17.
Eustace
,
R. W.
,
2008
, “
A Real-World Application of Fuzzy Logic and Influence Coefficients for Gas Turbine Performance Diagnostics
,”
ASME J. Eng. Gas Turbines Power
,
130
, p.
061601
.10.1115/1.2940989
18.
Volponi
,
A.
,
2003
, “
Foundation of Gas Path Analysis (Part I and II)
,”
Gas Turbine Condition Monitoring and Fault Diagnosis (von Karman Institute Lecture Series No. 1)
,
von Karman Institute
,
Rhode-Saint-Genèse, Belgium
.
19.
Kamboukos
,
P.
, and
Mathioudakis
,
K.
,
2005
, “
Comparison of Linear and Nonlinear Gas Turbine Performance Diagnostics
,”
ASME J. Eng. Gas Turbines Power
,
127
, pp.
49
56
.10.1115/1.1788688
20.
Lipowsky
,
H.
,
Staudacher
,
S.
,
Bauer
,
M.
, and
Schmidt
,
K. J.
,
2010
, “
Application of Bayesian Forecasting to Change Detection and Prognosis of Gas Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
,
132
, p.
031602
.10.1115/1.3159367
21.
Aretakis
,
N.
,
Mathioudakis
,
K.
, and
Stamatis
,
A.
,
2003
, “
Nonlinear Engine Component Fault Diagnosis From a Limited Number of Measurements Using a Combinatorial Approach
,”
ASME J. Eng. Gas Turbines Power
,
125
, pp.
642
650
.10.1115/1.1582494
22.
Donoho
,
D. L.
,
2006
, “
Compressed Sensing
,”
IEEE Trans. Inf. Theory
,
52
(
4
), pp.
1289
1306
.10.1109/TIT.2006.871582
23.
Yang
,
A. Y.
,
Wright
,
J.
,
Ma
,
Y.
, and
Sastry
,
S. S.
,
2007
, “
Feature Selection in Face Recognition: A Sparse Representation Perspective
,” UC Berkeley Tech Report No. UCB/EECS-2007-99.
24.
Zhang
,
B.
,
Karray
,
F.
,
Li
,
Q.
, and
Zhang
,
L.
,
2012
, “
Sparse Representation Classifier for Microaneurysm Detection and Retinal Blood Vessel Extraction
,”
Information Sci.
,
200
(
1
), pp.
78
90
.10.1016/j.ins.2012.03.003
25.
Chen
,
S. S.
,
Donoho
,
D. L.
, and
Saunders
,
M. A.
,
1999
, “
Atomic Decomposition by Basis Pursuit
,”
SIAM J. Sci. Comput.
,
20
(
1
), pp.
33
61
.10.1137/S1064827596304010
26.
Tropp
,
J.
, and
Gilbert
,
A. C.
,
2007
, “
Signal Recovery From Partial Information Via Orthogonal Matching Pursuit
,”
IEEE Trans. Inform. Theory
,
53
(
12
), pp.
4655
4666
.10.1109/TIT.2007.909108
27.
Borguet
,
S.
, and
Léonard
,
O.
,
2010
, “
A Sparse Estimation Approach to Fault Isolation
,”
ASME J. Eng. Gas Turbines Power
,
132
, p.
021601
.10.1115/1.3156815
28.
Borguet
,
S.
, and
Léonard
,
O.
,
2011
, “
Constrained Sparse Estimation for Improved Fault Isolation
,”
ASME J. Eng. Gas Turbines Power
,
133
, p.
121602
.10.1115/1.4004013
29.
Ji
,
S.
,
Xue
,
Y.
, and
Carin
,
L.
,
2008
, “
Bayesian Compressive Sensing
,”
IEEE Trans. Signal Process
,
56
, pp.
2346
2356
.10.1109/TSP.2007.914345
30.
Wipf
,
D.
, and
Rao
,
B.
,
2005
, “0
-Norm Minimization for Basis Selection
,”
Advances in Neural Information Processing Systems 17
,
L. K. Saul
,
Y. Weiss
, and
L. Bottou
, eds.,
MIT Press
,
Cambridge, MA
, pp.
1513
1520
.
31.
Wipf
,
D.
, and
Rao
,
B.
,
2006
, “
Comparing the Effects of Different Weight Distributions on Finding Sparse Representations
,”
Advances in Neural Information Processing Systems 18
, Y. Weiss, B. Schölkopf, J. Platt, eds., MIT Press, Cambridge, MA, pp. 1521–1528.
32.
Fuchs
,
J. J.
,
2004
, “
Recovery of Exact Sparse Representations in the Presence of Noise
,” IEEE International Conference on Acoustics, Speech and Signal Processing (
ICASSP'04
), Montreal, Canada, May 17–21, Vol. 2, pp.
533
536
.10.1109/ICASSP.2004.1326312
33.
Fuchs
,
J. J.
,
2004
, “
On Sparse Representations in Arbitrary Redundant Bases
,”
IEEE Trans. Inf. Theory
,
50
, pp.
1341
1344
.10.1109/TIT.2004.828141
34.
Tipping
,
M. E.
,
2001
, “
Sparse Bayesian Learning and the Relevance Vector Machine
,”
J. Mach. Learn. Res.
,
1
, pp.
211
244
.10.1162/15324430152748236
35.
Jansen
,
M.
,
Schulenberg
,
T.
, and
Waldinger
,
D.
,
1992
, “
Shop Test Result of the V64.3 Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
114
, pp.
676
681
.10.1115/1.2906641
36.
Camporeale
,
S.
,
Fortunato
,
B.
, and
Mastrovito
,
M.
,
2006
, “
A Modular Code for Real Time Dynamic Simulation of Gas Turbines in Simulink
,”
ASME J. Eng. Gas Turbines Power
,
128
, pp.
506
517
.10.1115/1.2132383
37.
Pinelli
,
M.
, and
Spina
,
P.
,
2002
, “
Gas Turbine Field Performance Determination: Sources of Uncertainties
,”
ASME J. Eng. Gas Turbines Power
,
124
, pp.
155
160
.10.1115/1.1413464
38.
Zwebek
,
A.
, and
Pilidis
,
P.
,
2003
, “
Degradation Effects on Combined Cycle Power Plant Performance—Part I: Gas Turbine Cycle Component Degradation Effects
,”
ASME J. Eng. Gas Turbines Power
,
125
, pp.
651
657
.10.1115/1.1519271
39.
Tipping
,
M. E.
,
2009
, “SPARSEBAYES V1.1: A Baseline Matlab Implementation of ‘Sparse Bayesian’ Model Estimation.”
40.
Wipf
,
D. P.
, and
Rao
,
B. D.
,
2004
, “
Sparse Bayesian Learning for Basis Selection
,”
IEEE Trans. Signal Process.
,
52
(
8
), pp.
2153
2164
.10.1109/TSP.2004.831016
You do not currently have access to this content.