The target of this study is to promote combustion capability using a novel rifled nozzle which was set at the outlet of a conventional (unrifled) combustor. The rifled nozzle was utilized to adjust the flow swirling intensity behind the traditional combustor by changing the number of rifles. The rifle mechanism enhances the turbulence intensity and increases the mixing efficiency between the central-fuel jet and the annular swirled air-jet by modifying the momentum transmission. Specifically, direct photography, Schlieren photography, thermocouples, and a gas analyzer were utilized to document the flame behavior, peak temperature, temperature distribution, combustion capability, and gas-concentration distribution. The experimental results confirm that increasing the number of rifles and the annular swirling air-jet velocity (ua) improves the combustion capability. Five characteristic flame modes—jet-flame, flickering-flame, recirculated-flame, ring-flame and lifted-flame—were obtained using various annular air-jet and central fuel-jet velocities. The total combustion capability (Qtot) increases with the number of rifles and with increasing ua. The Qtot of a 12-rifled nozzle (swirling number (S) = 0.5119) is about 33% higher than that of an unrifled nozzle. In addition, the high swirling intensity induces the low nitric oxide (NO) concentration, and the maximum concentration of NO behind the 12-rifled nozzle (S = 0.5119) is 49% lower than that behind the unrifled nozzle.

References

References
1.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flow
,
Abacus Press
,
Cambridge, UK
, pp.
1
293
.
2.
Rose
,
W. G.
,
1962
, “
A Swirling Round Turbulent Jet 1-Mean-Flow Measurements
,”
ASME J. Appl. Mech.
,
29
, pp.
615
625
.10.1115/1.3640644
3.
Chigier
,
N. A.
, and
Beer
,
J. M.
,
1964
, “
Velocity and Static Pressure Distributions in Swirling Air Jets Issuing from Annular and Divergent Nozzles
,”
ASME J. Fluids Eng.
,
86
, pp.
788
798
.10.1115/1.3655954
4.
Davies
,
T. W.
, and
Beer
,
J. M.
,
1971
, “
Flow in the Wake of Bluff-Body Flame Stabilizers
,”
Proceedings of the Thirteenth Symposium (International) on Combustion
, Salt Lake City, UT, August 23–29, 1970, The Combustion Institute, Pittsburgh, PA, pp.
631
638
.10.1016/S0082-0784(71)80065-6
5.
Chen
,
Y. C.
,
Cheng
,
C. C.
,
Pan
,
K. L.
, and
Yang
,
J. T.
,
1998
, “
Flame Lift-Off and Stabilization Mechanisms of Nonpremixed Jet Flame on a Bluff-Body Burner
,”
Combust. Flame
,
115
, pp.
51
65
.10.1016/S0010-2180(97)00336-2
6.
Huang
,
R. F.
, and
Lin
,
C. L.
,
1994
, “
Characteristic Modes and Thermal Structure of Nonpremixed Circular-Disc Stabilized Flames
,”
Combust. Sci. Technol.
,
100
, pp.
123
139
.10.1080/00102209408935449
7.
Roquemore
,
W. M.
,
Tankin
,
R. S.
,
Chiu
,
H. H.
, and
Lottes
,
S. A.
,
1986
, “
A Study of a Bluff-Body Combustor Using Laser Sheet Lighting
,”
Exp. Fluids
,
4
, pp.
205
213
.10.1007/BF00717816
8.
Marsri
,
A. R.
, and
Bilger
,
R. W.
,
1984
, “
Turbulent Diffusion Flame of Hydrocarbon Fuel Stabilized on a Bluff Body
,”
Proceedings of the Twentieth Symposium (International) on Combustion
, Ann Arbor, MI, August 12–17, The Combustion Institute, pp.
319
326
.10.1016/S0082-0784(85)80517-8
9.
Li
,
X.
, and
Takin
,
R. S.
,
1987
, “
A Study of Cold and Combusting Flow Around Bluff-Body Combustors
,”
Combust. Sci. Technol.
,
52
, pp.
173
206
.10.1080/00102208708952576
10.
Schefer
,
R. W.
,
Namazian
,
M.
, and
Kelly
,
J.
,
1994
, “
Velocity Measurement in Turbulent Bluff-Body Stabilized Flows
,”
AIAA J.
,
32
, pp.
1844
1851
.10.2514/3.12182
11.
Görtler
,
H.
,
1954
, “
Decay of Swirl in an Axially Symmetrical Jet Far From the Orifice
,”
Rev. Mat. Hisp.-Am.
,
14
(
4
), pp.
143
178
.
12.
Hartnett
,
J. P.
, and
Eckert
,
E. R. G.
,
1957
, “
Experiment Study of the Velocity and Temperature Distribution in a High Velocity Vortex Type Flow
,”
ASME J. Fluids Eng.
,
79
, pp.
751
757
.
13.
Lay
,
J. E.
,
1959
, “
An Experiment and Analytical Study of the Vortex-Flow Temperature Separation by Position of Spiral and Axial Flows
,”
ASME J. Fluids Eng.
,
81
, pp.
202
212
.
14.
Chigier
,
N. A.
, and
Chervinsky
,
A.
,
1967
, “
Experimental Investigation of Swirling Vortex Motions in Jets
,”
ASME J. Appl. Mech.
,
89
, pp.
443
451
.10.1115/1.3607703
15.
Kerr
,
N. M.
, and
Fraser
,
D.
,
1965
, “
Swirl Part 1: Effect on Axisymmetrical Turbulent Jets
,”
J. Institute Fuel
,
38
, pp.
519
526
.
16.
Cheng
,
T. S.
,
Chao
,
Y. C.
,
Wu
,
D. C.
,
Yuan
,
T.
,
Lu
,
C. C.
,
Cheng
,
C. K.
, and
Chang
,
J. M.
,
1998
, “
Effects of Fuel-Air Mixing on Flame Structures and NOx Emissions in Swirling Methane Jet Flames
,”
Proceedings of the Twenty-Seventh Symposium (International) on Combustion, Boulder, CO, August 2–7, The Combustion Institute
, pp.
1229
1237
.
17.
Chervinsky
,
A.
,
1969
, “
Turbulent Swirling Jet Diffusion Flames
,”
AIAA J.
,
7
(
10
), pp.
1877
1883
.10.2514/3.5475
18.
Chen
,
R. H.
, and
Driscoll
,
J. F.
,
1988
, “
The Role of the Recirculation Vortex in Improving Fule-Air Mixing Within Swirling Flames
,”
Proceedings of the Twenty-Second Symposium (International) on Combustion, Seattle, WA, August 14–19, The Combustion Institute
, pp.
531
540
.
19.
Morcos
, V
. H.
, and
Abdel-Rahim
,
Y. M.
,
1999
, “
Parametric Study of Flame Length Characteristics in Straight and Swirl Light-Fuel Oil Burners
,”
Fuel
,
78
(
8
), pp.
979
985
.10.1016/S0016-2361(99)00013-7
20.
Huang
,
R. F.
, and
Yen
,
S. C.
,
2008
, “
Aerodynamic Characteristics and Thermal Structure of Nonpremixed Reacting Swirling Wakes at Low Reynolds Numbers
Combust. Flame
,
155
(
4
), pp.
539
556
.10.1016/j.combustflame.2008.01.001
21.
San
,
K. C.
, and
Hsu
,
H. J.
,
2009
, “
Characteristics of Flow and Flame Behavior Behind Rifled/Unrifled Nozzles
,”
ASME J. Eng. Gas Turbines Power
,
131
, p.
051501
.10.1115/1.3078388
22.
Huang
,
R. F.
, and
Tsai
,
F. C.
,
2001
, “
Observations of Swirling Flows Behind Circular Discs
,”
AIAA J.
,
39
(
6
), pp.
1106
1112
.10.2514/2.1423
23.
Yen
,
S. C.
,
2003
, “
Flow Control and Flame Manipulation of Swirling Jets Using a Dual-Disc Blockage Configuration
,” Ph.D. thesis, National Taiwan University of Science and Technology, Taipei, Taiwan, pp.
63
65
.
24.
Cengel
,
Y. A.
, and
Boles
,
M. A.
,
1998
,
Thermodynamics: An Engineering Approach
,
3rd ed.
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.