This paper presents a detailed experimental and computational investigation of the effects of scalloping on the mixing mechanisms of a scaled 12-lobe turbofan mixer. Scalloping was achieved by eliminating approximately 70% of the lobe sidewall area. Measurements were made downstream of the mixer in a co-annular wind tunnel, and the simulations were carried out using an unstructured Reynolds averaged Navier–Stokes (RANS) solver, Numeca FINE/Hexa, with k-ω SST model. In the core flow, the swirl angle was varied from 0deg to 30deg. At high swirl angles, a three-dimensional separation bubble was formed on the lobe's suction surface penetration region and resulted in the generation of a vortex at the lobe valley. The valley vortex quickly dissipated downstream. The mixer lobes removed most of the swirl, but scalloped lobes removed less swirl in the region of the scalloped notch. The residual swirl downstream of the scalloped mixer interacted with the vortices and improved mixing rates compared to the unscalloped mixer. Core flow swirl up to 10deg provided improved mixing rates and reduced pressure and thrust losses for both mixers. As core flow swirl increased beyond 10deg, the mixing rate continued to improve, but pressure and thrust losses declined compared to the zero swirl case. Lobe scalloping, in high swirl conditions, resulted in better mixing and improved pressure loss over the unscalloped mixer but at the expense of reduced thrust.

References

References
1.
Paterson
,
R. W.
,
1984
, “
Turbofan Mixer Nozzle Flow Field—Benchmark Experimental Study
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
692
6981
.10.1115/1.3239625
2.
Waitz
,
I. A.
,
Qiu
,
Y. J.
,
Manning
,
T. A.
,
Fung
,
A. K. S.
,
Elliot
,
J. K.
,
Kerwin
,
J. M.
,
Krasnodebske
,
J. K.
,
O'Sullivan
,
M. N.
,
Tew
,
D. E.
,
Greitzer
,
E. M.
,
Marble
,
F. E.
,
Tan
,
C. S.
, and
Tillman
,
T. G.
,
1997
, “
Enhanced Mixing With Streamwise Vorticity
,”
Prog. Aerosp. Sci.
,
33
, pp.
323
351
.10.1016/S0376-0421(96)00008-5
3.
McCormick
,
D. C.
, and
Bennett
,
J. C. J.
,
1994
, “
Vortical and Turbulent Structure of a Lobed Mixer Free Shear Layer
,”
AIAA J.
,
32
, pp.
1852
1859
.10.2514/3.12183
4.
Yu
,
S. C. M.
,
Yeo
,
J. H.
, and
Teh
,
J. K. L.
,
1995
, “
Velocity Measurements Downstream of Lobed Forced Mixers With Different Convoluted Trailing Edge Configurations
,”
J. Propul. Power
,
13
, pp.
87
97
.10.2514/3.23844
5.
Yu
,
S. C. M.
,
Yu
,
X. G.
, and
Yip
,
T. H.
,
1996
, “
Effects of Initial Boundary Layer Thickness to the Lobed Forced Mixer Trailing Streamwise Vorticity
,”
J. Propul. Power
,
12
, pp.
440
442
.10.2514/3.24053
6.
Yu
,
S. C. M.
, and
Yip
,
T. H.
,
1997
, “
Experimental Investigation of Two-Stream Mixing Flows With Streamwise and Normal Vorticity
,”
Int. J. Heat Fluid Flow
,
18
, pp.
253
261
.10.1016/S0142-727X(96)00093-8
7.
Hu
,
H.
,
Saga
,
T.
, and
Kobayashi
,
T.
,
2005
, “
Dual-Plane Stereoscopic PIV Measurements in a Lobed Jet Mixing Flow
,”
Proceedings of the 43rd AIAA Aerospace Sciences Meeting
, Reno, NV, January 10–13,
AIAA
Paper No. 2005-443. 10.2514/6.2005-443
8.
Kuchar
,
A. P.
, and
Chamberlin
,
R.
,
1980
Scale Model Performance Test Investigation of Exhaust System Mixers for an Energy Efficient Engine (E3) Propulsion System
,”
Proceedings of the 18th AIAA Aerospace Sciences Meeting
, Pasadena, CA, January 14–16,
AIAA
Paper No. 80-0229. 10.2514/6.1980-229
9.
Kozlowski
,
H.
, and
Larkin
,
M.
,
1981
, “
Energy Efficient Engine: Exhaust Mixer Model Technology Report
,”
NASA
, Report No. CR-165459.
10.
Tanna
,
H. K.
,
1973
, “
On the Effect of Swirling Motion of Sources on Subsonic Jet Noise
,”
J. Sound Vib.
,
29
, pp.
281
293
.10.1016/S0022-460X(73)80285-8
11.
Presz
,
W. M.
,
Reynolds
,
G.
, and
McCormick
,
D.
,
1994
, “
Thrust Augmentation Using Mixer-Ejector-Diffuser Systems
,”
Proceedings of the 32nd AIAA Aerospace Sciences Meeting
, Reno, NV, January 10–13,
AIAA
Paper No. 94-0020. 10.2514/6.1994-20
12.
Yu
,
S. C. M.
,
Yip
,
T. H.
, and
Liu
,
C. Y.
,
1997
, “
The Mixing Characteristics of Forced Mixers With Scalloped Lobes
,”
J. Propul. Power
,
13
, pp.
305
311
.10.2514/2.5164
13.
Yu
,
S. C. M.
,
Hou
,
Y.
, and
Chan
,
W. K.
,
2000
., “
Scarfing and Scalloping Effects on Lobed Forced Mixer at Low-Speed Conditions
,”
J. Propul. Power
,
16
, pp.
440
448
.10.2514/2.5608
14.
Mao
,
R.
,
Yu
,
S. C. M.
,
Zhou
,
T.
, and
Chua
,
L. P.
,
2009
, “
On the Vorticity Characteristics of Lobe-Forced Mixer at Different Configurations
,”
Exp. Fluids
,
46
, pp.
1049
1066
.10.1007/s00348-009-0613-x
15.
Lei
,
J.
,
Mahallati
,
A.
,
Cunningham
,
M.
, and
Germain
,
P.
,
2012
, “
Effects of Core Flow Swirl on Flow Characteristics of a Scalloped Lobed Force Mixer
,”
ASME J. Eng. Gas Turbines Power
,
134
, p.
111201
.10.1115/1.4005968
16.
Lei
,
Z.
,
Mahallati
,
A.
,
Yang
,
H.
,
Cunningham
,
M.
, and
Germain
,
P.
,
2011
, “
Numerical and Experimental Investigation of Highly Swirling Flows in a Model Turbofan Lobed Mixer
,”
Proceedings of the 20th International Society for Airbreathing Engines (ISABE 2011)
, Gothenburg, Sweden, September 12–16, Paper No. ISABE-2011-1822.
17.
Koutmos
,
P.
, and
McGuirk
,
J. J.
,
1989
, “
Turbofan Forced Mixer/Nozzle Temperature and Flow Field Modelling
,”
Int. J. Heat Mass Transfer
,
32
, pp.
1141
1153
.10.1016/0017-9310(89)90013-6
18.
O'Sullivan
,
M. N.
,
Krasnodebski
,
J. K.
,
Waitz
, I
. A.
,
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Dawes
,
W. N.
,
1996
, “
Computational Study of Viscous Effects on Lobed Mixer Flow Features and Performance
,”
J. Propul. Power
,
12
, pp.
449
456
.10.2514/3.24056
19.
Tester
,
B. J.
,
Fisher
,
M. J.
, and
Dalton
,
W. N.
,
2004
, “
A Contribution to the Understanding and Prediction of Jet Noise Generation in Forced Mixers
,”
Proceedings of the 10th AIAA/CEAS Aeroacoustics Conference
, Manchester, UK, May 10–12,
AIAA
Paper No. 2004-2897. 10.2514/6.2004-2897
20.
Manning
,
T. A.
,
1991
, “
Experimental Studies of Mixing Flows With Streamwise Vorticity
,” M.S. thesis, Massachusetts Institute of Technology, Cambridge, MA.
21.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,” Turbulence, Heat and Mass Transfer: Proceedings of the Fourth International Symposium on Turbulence, Heat and Mass Transfer, Antalya, Turkey, October 12–17, Vol. 4, K. Hanjalić,
Y.
Nagano
, and
M.
Tummers
, eds., Begell House Inc., Redding, CT, pp.
625
632
.
22.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
,
1988
, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
, pp.
1
8
.10.1115/1.3262163
23.
Escudier
,
M. P.
, and
Keller
,
J. J.
,
1985
, “
Recirculation in Swirling Flow: A Manifestation of Vortex Breakdown
,”
AIAA J.
,
23
, pp.
111
116
.10.2514/3.8878
24.
Sheen
,
H. J.
,
Chen
,
W. J.
, and
Jeng
,
S. Y.
,
1996
, “
Recirculation Zones of Unconfined and Confined Annular Swirling Jets
,”
AIAA J.
,
34
, pp.
572
579
.10.2514/3.13106
You do not currently have access to this content.