A cavitation model has been developed for the internal two-phase flow of diesel and biodiesel fuels in fuel injectors under high injection pressure conditions. The model is based on the single-fluid mixture approach with newly derived expressions for the phase change rate and local mean effective pressure—the two key components of the model. The effects of the turbulence, compressibility, and wall roughness are accounted for in the present model and model validation is carried out by comparing the model predictions of probable cavitation regions, velocity distribution, and fuel mass flow rate with the experimental measurement available in literature. It is found that cavitation inception for biodiesel occurs at a higher injection pressure, compared to diesel, due to its higher viscosity. However, supercavitation occurs for both diesel and biodiesel at high injection pressures. The renormalization group (RNG) k-ɛ model for turbulence modeling is reasonable by comparing its performance with the realizable k-ɛ and the shear stress transport (SST) k-ω models. The effect of liquid phase compressibility becomes considerable for high injection pressures. Wall roughness is not an important factor for cavitation in fuel injectors.

References

References
1.
Schmidt
,
D.
, and
Corradini
,
M.
,
2001
, “
The Internal Flow of Diesel Fuel Injector Nozzles: A Review
,”
Int. J. Engine Res.
,
2
, pp.
1
22
.10.1243/1468087011545316
2.
Ra
,
Y.
,
Rolf
,
D. R.
,
McFarlane
,
J.
, and
Daw
,
C. S.
,
2008
, “
Effects of Fuel Physical Properties on Diesel Engine Combustion Using Diesel and Bio-Diesel Fuels
,”
Society of Automobile Engineering Conference
,
SAE Int. J. Fuels Lubr.
1(1), pp. 703–718.10.4271/2008-01-1379
3.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
Oxford
, UK.
4.
Schmidt
,
D.
,
Rutland
,
C. J.
, and
Corradini
,
M. L.
,
1999
, “
A Fully Compressible Two-Dimensional Model of High Speed Cavitating Nozzles
,”
Atomization Sprays
,
9
(3), pp.
255
276
.
5.
Jospeh
,
D. D.
,
1998
, “
Cavitation and the State of Stress in a Flowing Liquid
,”
J. Fluid Mech.
,
366
, pp.
367
378
.10.1017/S0022112098001530
6.
Giannadakis
,
E.
,
Gavaises
,
M.
, and
Arcoumanis
,
C.
,
2008
, “
Modelling of Cavitation in Diesel Injector Nozzles
,”
J. Fluid Mech.
,
616
, pp.
153
193
.10.1017/S0022112008003777
7.
Nurick
,
W
.,
1976
, “
Orifice Cavitation and Its Effect on Spray Mixing
,”
ASME J. Fluids Eng.
,
98
, pp.
681
687
.10.1115/1.3448452
8.
Chaves
,
H.
,
Knapp
,
M.
,
Kubitzek
,
A.
,
Obermeier
,
F.
, and
Schneider
,
T.
,
1995
, “
Experimental Study of Cavitation in the Nozzle Hole of Diesel Injectors Using Transparent Nozzles
,”
Society of Automobile Engineering Conference
,
SAE
Paper No. 950290.10.4271/950290
9.
Winklhofer
,
E.
,
Kull
,
E.
,
Kelz
,
E.
, and
Morozov
,
A.
,
2001
, “
Comprehensive Hydraulic and Flow Field Documentation in Model Throttle Experiments Under Cavitation Conditions
,” ILASS Europe: 17th Annual Conference on Liquid Atomization & Spray Systems, Zurich, Switzerland, September 2–6.
10.
Yuan
,
W.
, and
Schnerr
,
G. H.
,
2003
, “
Numerical Simulation of Two-Phase Flow in Injection Nozzles: Interaction of Cavitation and External Jet Formation
,”
ASME J. Fluids Eng.
,
125
, pp.
963
969
.10.1115/1.1625687
11.
Edelbauer
,
E. B. W.
,
Alajbegovic
,
A.
,
Tatschi
,
R.
,
Volmajer
,
M.
, Kegl, B., and Ganippa, L.,
2005
, “
Coupled Simulations of Nozzle Flow, Primary Fuel Jet Breakup, and Spray Formation
,”
ASME J. Eng. Gas Turbines Power
,
127
, pp.
1
22
.10.1115/1.1787504
12.
Battistoni
,
M.
, and
Grimaldi
,
C.
,
2010
, “
Analysis of Transient Cavitating Flows in Diesel Injectors Using Diesel and Biodiesel Fuels
,”
SAE Int. J. Fuels Lubr.
, 3(2), pp. 879–900.10.4271/2010-01-2245
13.
Chahine
,
G.
,
Hsiao
,
C.
,
Choi
,
J.
, and Wu, X.,
2008
, “
Bubble Augmented Waterjet Propulsion: Two-Phase Model Development and Experimental Validation
,”
27th Symposium on Naval Hydrodynamics
, Seoul, Korea, October 5–10.
14.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
, pp.
617
624
.10.1115/1.1486223
15.
Som
,
S.
,
Aggarwal
,
S. K.
,
El-Hannouny
,
E.
, and
Longman
,
D.
,
2010
, “
Investigation of Nozzle Flow and Cavitation Characteristics in a Diesel Injector
,”
ASME J. Eng. Gas Turbines Power
,
132
, pp.
1
12
.10.1115/1.3203146
16.
Som
,
S.
,
Longman
,
D.
,
Ramirez
,
A.
, and
Aggarwal
,
S. K.
,
2010
, “
A Comparison of Injector Flow and Spray Characteristics of Biodiesel With Petrodiesel
,”
Fuel
,
89
, pp.
4014
4024
.10.1016/j.fuel.2010.05.004
17.
Echouchene
,
F.
,
Belmabrouk
,
H.
,
Penven
,
L. L.
, and
Buffat
,
M.
,
2011
, “
Numerical Simulation of Wall Roughness Effects in Cavitating Flow
,”
Int. J. Heat Fluid Flow
,
32
, pp.
1068
1075
.10.1016/j.ijheatfluidflow.2011.05.010
18.
Neroorkar
,
K.
,
Shields
,
B.
,
Grover
,
R. O.
,
Torres
,
A. P.
, and
Schmidt
,
D.
,
2012
, “
Application of the Homogeneous Relaxation Model to Simulating Cavitating Flow of a Diesel Fuel
,”
Society of Automobile Engineering Conference
,
SAE
Paper No. 2012-01-1269.10.4271/2012-01-1269
19.
Ansys FLUENT, 2006, Fluent 6.3 documentation.
20.
Hinze
,
J. O.
,
1975
,
Turbulence
,
McGraw-Hill
,
New York
.
21.
Szybist
,
J.
,
Morris
,
D.
, and
Boehman
,
A.
,
2003
, “
Diesel Fuel Formulation Effects on Injection Timing and Emissions
,” Argonne National Laboratory, Fuel Chemistry Division, Technical Report.
22.
Suh
,
H.
,
Park
,
S.
, and
Lee
,
C.
,
2008
, “
Experimental Investigation of Nozzle Cavitating Flow Characteristics for Diesel and Biodiesel Fuels
,”
Int. J. Automot. Technol.
,
9
, pp.
217
224
.10.1007/s12239-008-0028-3
23.
Peiner
,
E.
,
Balke
,
M.
, and
Doering
,
L.
,
2009
, “
Form Measurement Inside Fuel Injector Nozzle Spray Holes
,”
Microelectron. Eng.
,
86
, pp.
984
986
.10.1016/j.mee.2008.12.016
You do not currently have access to this content.