This paper summarizes the findings from research studies carried out over the last 30 years, to better understand the flows in steam turbine low pressure exhaust hoods and diffusers. The work aims to highlight the areas where further study is still required. A detailed description of the flow structure is outlined and the influence of the last turbine stage and the hood geometry on loss coefficient is explored. At present, the key challenge faced is numerically modeling the three-dimensional, unsteady, transonic, wet steam exhaust hood flow given the impractically high computational power requirement. Multiple calculation simplifications to reduce the computational demand have been successfully verified with experimental data, but at present there is no ‘best-practice’ approach to reduce the computational time for routine design exercises. This paper highlights the importance of coupling the exhaust hood to the last stage steam turbine blades to capture the interaction; ensuring the total pressure and swirl angle profiles, along with the tip leakage jet are accurately applied to the diffuser inlet. The nonaxial symmetry of the exhaust hood means it is also important to model the full blade annulus. More studies have emerged modeling the wet steam and unsteady flow effects, but more work is required in this area to fully understand the impact on the flow structure.

References

References
1.
Beevers
,
A.
,
Congiu
,
F.
,
Pengue
,
F.
, and
Mokulys
,
T.
, 2010, “
An Analysis of the Merits of CFD for the Performances Prediction of a Low Pressure Steam Turbine Radial Diffuser
,” ASME Turbo Expo, Glasgow, UK, June 14–18,
ASME
Paper No. GT2010-22107.10.1115/GT2010-22107
2.
Burton
,
Z.
,
Ingram
,
G. L.
, and
Hogg
,
S.
, 2012, “
A Generic Low Pressure Exhaust Diffuser for Steam Turbine Research
,” ASME Turbo Expo, Copenhagen, Denmark, June 11–15, ASME Paper No. GT2012-68485.
3.
Fu
,
J.
, and
Liu
,
J.
, 2010, “
Investigation of Influential Factors on the Aerodynamic Performance of a Steam Turbine Exhaust System
,” ASME Turbo Expo, Glasgow, UK, June 14–18,
ASME
Paper No. GT2010-22316.10.1115/GT2010-22316
4.
Liu
,
J.
, and
Hynes
,
T. P.
, 2002, “
The Investigation of Turbine and Exhaust Interactions in Asymmetric Flows: Part 1—Blade Row Models Applied
,” ASME Turbo Expo, Amsterdam, The Netherlands, June 3–6,
ASME
Paper No. GT2002-30342.10.1115/GT2002-30342
5.
Mizumi
,
S.
,
Ishibashi
,
K.
, and
Sawamura
,
Y.
, 2012, “
Steam Turbine Exhaust Hood With Swirl Flow Separtion Ducts
,” ASME Turbo Expo, Copenhagen, Denmark, June 11–15, ASME Paper No. GT2012-68315.
6.
Keller
,
H.
, 1986,
Aerothermodynamics of Low Pressure Steam Turbines and Condensers
,
Hemisphere
,
Washington, DC
.
7.
Owczarek
,
J. A.
,
Warnock
,
A. S.
, and
Malik
,
P.
,
1989
, “
A Low Pressure Turbine Exhaust End Flow Model Study
,” Latest Advances in Steam Turbine Design, Blading, Repairs, Condition, Assessment, and Condenser Interactions, D. M. Rasmussen, ed., ASME, New York, pp. 77–88.
8.
Tindell
,
R.
,
Alston
,
T.
,
Sarro
,
C.
,
Stegmann
,
G.
,
Gray
,
L.
, and
Davids
,
J.
,
1996
, “
Computational Fluid Dynamics Analysis of a Steam Power Plant Low-Pressure Turbine Downward Exhaust Hood
,”
ASME J. Eng. Gas Turbines Power
,
118
, pp.
214
224
.10.1115/1.2816543
9.
Xu
,
X.
,
Kang
,
S.
, and
Hirsch
,
C.
, 2001, “
Numerical Simulation of the 3D Viscous Flow in the Exhaust Casing of a Low-Pressure Steam Turbine
,” ASME Turbo Expo, New Orleans, LA, June 4–7, ASME Paper No. GT2001-0487.
10.
Fan
,
T.
,
Xie
,
Y.
,
Zhang
,
D.
, and
Sun
,
B.
, 2007, “
A Combined Numerical Model and Optimization for Low Pressure Exhaust System in Steam Turbine
,”
ASME Power Conference
,
San Antonio, TX
, July 17–19,
ASME
Paper No. POWER2007-22147.10.1115/POWER2007-22147
11.
Zhang
,
W.
,
Paik
,
B. G.
,
Jang
,
Y. G.
,
Lee
,
S. J.
,
Lee
,
S. E.
, and
Kim
,
J. H.
,
2007
, “
Particle Image Velocimetry Measurements of the Three-Dimensional Flow in an Exhaust Hood Model of a Low-Pressure Steam Turbine
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
411
419
.10.1115/1.2431387
12.
Fu
,
J.-L.
, and
Liu
,
J.-J.
,
2008
, “
Influences of Inflow Condition on Non-Axisymmetric Flows in Turbine Exhaust Hoods
,”
J. Thermal Sci.
,
17
(
4
), pp.
305
313
.10.1007/s11630-008-0305-5
13.
Liu
,
J. J.
,
Cui
,
Y. Q.
, and
Jiang
,
H. D.
,
2003
, “
Investigation of Flow in a Steam Turbine Exhaust Hood With/Without Turbine Exit Conditions Simulated
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
292
299
.10.1115/1.1499726
14.
Yoon
,
S.
,
Stanislaus
,
F. J.
,
Mokulys
,
T.
,
Singh
,
G.
, and
Claridge
,
M.
, 2011, “
A Three-Dimensional Diffuser Design for the Retrofit of a Low Pressure Turbine Using In-House Exhaust Design System
,” ASME Turbo Expo, Vancouver, Canada, June 6–10,
ASME
Paper No. GT2011-45366.10.1115/GT2011-45466
15.
Wang
,
H.
,
Zhu
,
X.
, and
Du
,
Z.
,
2010
, “
Aerodynamic Optimization for Low Pressure Turbine Exhaust Hood Using Kriging Surrogate Model
,”
Int. Commun. Heat Mass Transfer
,
37
(
8
), pp.
998
1003
.10.1016/j.icheatmasstransfer.2010.06.022
16.
Verstraete
,
T.
,
Prinsier
,
J.
,
Di Sante
,
A.
,
Della Gatta
,
S.
, and
Cosi
,
L.
, 2011, “
Design Optimization of a Low Pressure Steam Turbine Radial Diffuser Using an Evolutionary Algorithm and 3D CFD
,” ASME Turbo Expo, Copenhagen, Denmark, June 11–15, ASME Paper No. GT2012-69515.
17.
Tajc
,
L.
,
Bednar
,
L.
,
Sikova
,
I.
,
Feldberg
,
L. A.
, and
Goudkov
,
E. I.
, 2006, “
The Experimental Investigation of the Influence of the Flow Swirl and Tip Clearance Jet on Aerodynamic Characteristics of Exhaust Hoods
,”
Engineering Mechanics
,
SKODA Power, Svratka
,
Czech Republic
, pp.
1
10
.
18.
Hoznedl
,
M.
,
Tajc
,
L.
,
Krejcik
,
J.
,
Bednar
,
L.
,
Sedlak
,
K.
, and
Linhart
,
J.
,
2009
. “
Exhaust Hood for Steam Turbines Single-Flow Arrangement
,”
Frontiers of Energy and Power Engineering in China
,
3
(
3
), pp.
321
329
.10.1007/s11708-009-0039-4
19.
Finzel
,
C.
,
Schatz
,
M.
,
Casey
,
M. V.
, and
Gloss
,
D.
, 2011, “
Experimental Investigation of Geometrical Parameters on the Pressure Recovery of Low Pressure Steam Turbine Exhaust Hoods
,” ASME Turbo Expo, Vancouver, Canada, June 6–10,
ASME
Paper No. GT2011-45302.10.1115/GT2011-45302
20.
Stastny
,
M.
,
Ladislav
,
T.
,
Kolar
,
P.
, and
Tucek
,
A.
,
2000
, “
Effect of Inlet Swirl on the Flow in a Steam Turbine Exhaust Hood
,”
J. Thermal Sci.
,
9
(
4
), pp.
327
333
.10.1007/s11630-000-0072-4
21.
Benim
,
A. C.
,
Geiger
,
M.
,
Doehler
,
S.
,
Schoenenberger
,
H.
, and
Roemer
,
H.
,
1995
, “
Modelling the Flow in the Exhaust Hood Steam Turbines Under Consideration of the Turbine-Exhaust Hood Interaction
,” VDI Berichte, Duesseldorf, Germany, NR1185, pp. 343–357.
22.
Tindell
,
R. H.
, and
Alston
,
T. M.
,
1992
, “
A Comparison of Two Methods for Utilizing Steam Turbine Exhaust Hood Flow Field Data
,”
ASME J. Turbomach.
,
114
(
2
), pp.
398
401
.10.1115/1.2929157
23.
Gardzilewicz
,
A.
,
Swirydczuk
,
J.
,
Badur
,
J.
,
Karcz
,
M.
,
Werner
,
R.
, and
Szyrejko
,
C.
,
2003
, “
Methodology of CFD Computations Applied for Analysing Flow Through Steam Turbine Exhaust Hoods
,”
Trans. Inst. Fluid-Flow Machinery
,
113
, pp.
157
168
.
24.
Kreitmeier
,
F.
, and
Greim
,
R.
,
2003
, “
Optimization of Blade-Diffuser Interaction for Improved Turbine Performance
,”
Proc. Inst. Mech. Eng., Part A
,
217
(
4
), pp.
443
451
.10.1243/095765003322315504
25.
Zhou
,
S.
,
Liu
,
J.
, and
Fu
,
J.
,
2007
, “
Experimental and Numerical Investigation of Interaction Between Turbine Stage and Exhaust Hood
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
7
), pp.
991
999
.10.1243/09576509JPE415
26.
Li
,
Z.
,
Li
,
J.
,
Yan
,
X.
,
Feng
,
Z.
,
Ohyama
,
H.
, and
Zhang
,
M.
, 2012, “
Investigations on the Flow Pattern and Aerodynamic Performance of Last Stage and Exhaust Hood for Large Power Steam Turbines
,” ASME Turbo Expo, Copenhagen, Denmark, June 11–15, ASME Paper No. GT2012-69291.
27.
Joo
,
W. G.
, and
Hynes
,
T. P.
,
1997
, “
The Simulation of Turbomachinery Blade Rows in Asymmetric Flow Using Actuator Disks
,”
ASME J. Turbomach.
,
119
, pp.
723
732
.10.1115/1.2841182
28.
Stanciu
,
M.
,
Fendler
,
Y.
, and
Dorey
,
J.-M.
, 2011, “
Unsteady Stator-Rotor Interaction Coupled With Exhaust Hood Effect for Last Stage Steam Turbines
,”
9th European Turbomachinery Conference
,
Istanbul, Turkey
, March 21–25.
29.
Sieker
,
O.
, and
Seume
,
J. R.
,
2008
, “
Influence of Rotating Wakes on Separation in Turbine Exhaust Diffusers
,”
J. Thermal Sci.
,
17
(
1
), pp.
42
49
.10.1007/s11630-008-0042-9
30.
Solodov
,
V.
, and
Gnesin
,
V.
,
1997
, “
Three-Dimensional Simulation of Nonstationary Flow Phenomena in Last Stage Exhaust Hood Compartment
,”
J. Thermal Sci.
,
6
(
4
), pp.
231
236
.10.1007/s11630-997-0001-x
31.
Fu
,
J.-L.
,
Liu
,
J.-J.
, and
Zhou
,
S.-J.
,
2012
, “
Unsteady Interactions Between Axial Turbine and Nonaxisymmetric Exhaust Hood Under Different Operational Conditions
,”
ASME J. Turbomachinery
,
134
(
4
), p.
041002
.10.1115/1.4003647
32.
He
,
L.
, and
Ning
,
W.
,
1998
, “
Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines
,”
American Institute of Aeronautics and Astronautics
,
36
(
11
), pp.
2005
2012
.10.2514/2.328
33.
Burton
,
Z.
,
Ingram
,
G. L.
, and
Hogg
,
S.
, 2013, “
A Novel Method of Coupling the Steam Turbine Exhaust Hood and the Last Stage Blades Using the Non-Linear Harmonic Method
,” ASME Turbo Expo, San Antonio, TX, June 3–7, ASME Paper No. GT2013-94184 (to be reviewed).
34.
Dejean
,
F.
,
Bourdonneau
,
L.
, and
Duplex
,
J.
, 1997, “
Three-Dimensional Coupled Flow Calculations in a Low Pressure Steam Turbine Last Stage and Exhaust Hood
,”
2nd European Conference in Turbomachinery: Fluid Dynamics and Thermodynamics
,
Antwerpt, Belgium
, March 5–8.
35.
Ris
,
V. V.
,
Simoyu
,
L. L.
,
Galaev
,
S. A.
,
Gudkov
,
N. N.
,
Kirillov
,
V. I.
,
Smirnov
,
E. M.
,
Kirillov
,
A. I.
, and
Ermolaev
,
V. V.
,
2009
, “
Numerical Simulation of Flow in a Steam Turbine Exhaust Hood: Comparison Results of Calculations and Data From a Full-Scale Experiment
,”
Thermal Eng.
,
56
(
4
), pp.
277
283
.10.1134/S004060150904003X
36.
Stastny
,
M.
,
Kolar
,
P.
, and
Tucek
,
A.
,
1997
, “
3D Flow in the Axial-Radial Exahust Hood of a Steam Turbine
,”
Thermal Sci.
,
6
(
4
), pp.
237
240
.10.1007/s11630-997-0002-9
37.
Cordova
,
M.
, and
Stoffel
,
B.
, 2006, “
Comparison of Various Turbulence Models in Respect to Their Suitability for CFD Calculations of Diffuser Flows
,” ASME Turbo Expo, Barcelona, Spain, May 8–11,
ASME
Paper No. GT2006-90524.10.1115/GT2006-90524
38.
Musch
,
C.
,
Heinrich
,
S.
, and
Hermle
,
G.
, 2011, “
Optimization Strategy for a Coupled Design of the Last Stage and the Successive Diffuser in a Low Pressure Steam Turbine
,” ASME Turbo Expo, Vancouver, Canada, June 6–10,
ASME
Paper No. GT2011-46237.10.1115/GT2011-46237
39.
Liu
,
J.
, and
Hynes
,
T. P.
, 2002, “
The Investigation of Turbine and Exhaust Interactions in Asymmetric Flows: Part 2—Turbine-Diffuser-Collector Interactions
,” ASME Turbo Expo, Amsterdam, The Netherlands, June 3–6,
ASME
Paper No. GT2002-30343.10.1115/GT2002-30343
40.
Denton
,
J. D.
, 2010, “
Some Limitation of Turbomachinery CFD
,” ASME Turbo Expo, Glasgow, UK, June 14–18,
ASME
Paper No. GT2010-22540.10.1115/GT2010-22540
41.
Gray
,
L.
,
Sandhu
,
S.
,
Davids
,
J.
, and
Southall
,
L.
,
1989
, “
Technical Considerations in Optimizing Blade-Exhaust Hood Performance for Low Pressure Steam Turbines
,” Latest Advances in Steam Turbine Design, Blading Repairs, Condition Assessment and Condenser Interactions, (ASME PWR), Vol. 7, ASME, New York, pp. 89–97.
42.
Tajč
,
L.
,
Bednář
,
L.
,
Polanský
,
J.
, and
Gudkov
,
E. I.
,
2001
, “
Exhaust Hoods of Double-Flow Arrangement
,” 4th European Conference on Turbomachinery, Firenze, Italy, March 20–23.
43.
McDonald
,
A. T.
,
Fox
,
R. W.
, and
Van Dewoestine
,
R. V.
,
1971
, “
Effect of Swirling Inlet Flow on Pressure Recovery in Conical Diffusers
,”
AIAA J.
,
9
(
10
), pp.
2014
2018
.10.2514/3.6456
44.
Kumar
,
D.
, and
Kumar
,
K.
,
1980
, “
Effect of Swirl on Pressure Recovery in Annular Diffusers
,”
J. Mech. Eng. Sci.
,
22
(
6
), pp.
305
313
.10.1243/JMES_JOUR_1980_022_056_02
45.
Musch
,
C.
,
Stuer
,
H.
, and
Hermle
,
G.
,
2013
, “
Optimization Strategy for a Coupled Design of the Last Stage and the Successive Diffuser in a Low Pressure Steam Turbine
,”
ASME J. Turbomach.
,
135
(
1
), p.
011013
.10.1115/1.4006335
46.
Uvarov
,
V.
,
Shkurikhin
,
I.
, and
Molyakov
,
V.
,
1976
, “
Investigation of Joint Operation of Turbine Stages and of a Radial-Annular Diffuser With a Controlled Boundary Layer
,”
Thermal Eng.
,
23
(
5
), pp.
18
20
.
47.
Kasilov
,
V.
, and
Sharkov
,
A.
,
2004
, “
Evaluating the Effect of Steam Wetness on the Efficiency of the Exhaust Hoods of the Low-Pressure Cylinders of Steam Turbines
,”
Thermal Eng.
,
51
(
5
), pp.
378
383
.
48.
Zaryankin
,
A. E.
, and
Myslitskii
,
E. N.
, 1969, “
Study of Exhaust Hood in Combination With a Wheel of a Radial-Axial Turbine
,” Proc. MEI, Moscow.
49.
Tanuma
,
T.
,
Sasao
,
Y.
,
Yamamoto
,
S.
,
Niizeki
,
Y.
,
Shibukawa
,
N.
, and
Saeki
,
H.
, 2012, “
Numerical Investigation of Three-Dimensional Wet Steam Flow in an Exhaust Diffuser With Non-Uniform Inket Flows From the Turbine Stages in a Steam Turbine
,” ASME Turbo Expo, Copenhagen, Denmark, June 11–15, ASME Paper No. GT2012-69496.
50.
Senoo
,
S.
,
Takahashi
,
F.
,
Shikano
,
Y.
, and
Kimura
,
T.
, 2004, “
The Computational Technique for Compressible Fluid Based on Steam Properties and Performance Improvements on Steam Turbines
,”
14th International Conference on the Properties of Water and Steam
,
Kyoto, Japan
, August 29–September 3, pp.
655
659
.
51.
Fric
,
T. F.
,
Villarreal
,
R.
,
Auer
,
R. O.
,
James
,
M. L.
,
Ozgur
,
D.
, and
Staley
,
T. K.
,
1998
, “
Vortex Shedding From Struts in an Annular Exhaust Diffuser
,”
ASME J. Turbomach.
,
120
(
1
), pp.
186
192
.10.1115/1.2841380
You do not currently have access to this content.