The prediction of the preswirl cooling air delivery and disk metal temperature are important for the cooling system performance and the rotor disk thermal stresses and life assessment. In this paper, standalone 3D steady and unsteady computation fluid dynamics (CFD), and coupled FE-CFD calculations are presented for prediction of these temperatures. CFD results are compared with previous measurements from a direct transfer preswirl test rig. The predicted cooling air temperatures agree well with the measurement, but the nozzle discharge coefficients are under predicted. Results from the coupled FE-CFD analyses are compared directly with thermocouple temperature measurements and with heat transfer coefficients on the rotor disk previously obtained from a rotor disk heat conduction solution. Considering the modeling limitations, the coupled approach predicted the solid metal temperatures well. Heat transfer coefficients on the rotor disk from CFD show some effect of the temperature variations on the heat transfer coefficients. Reasonable agreement is obtained with values deduced from the previous heat conduction solution.

References

References
1.
Meierhofer
,
B.
, and
Franklin
,
C. J.
,
1981
, “
An Investigation of Pre-Swirled Cooling Airflow to a Turbine Disk by Measuring the Air Temperature in the Rotating Channels
,” ASME Paper No. 81-GT-132.
2.
El-Oun
,
Z. B.
, and
Owen
,
J. M.
,
1989
, “
Pre-Swirl Blade-Cooling Effectiveness in an Adiabatic Rotor-Stator System
,”
ASME J. Turbomach
,
111
, pp.
522−529
.10.1115/1.3262303
3.
Wilson
,
M.
,
Pilbrow
,
R.
, and
Owen
,
J. M.
,
1997
, “
Flow and Heat Transfer in a Pre-Swirl Rotor-Stator System
,”
ASME J. Turbomach.
,
119
, pp.
364−373
.10.1115/1.2841120
4.
Karabay
,
H.
,
Chen
,
J. X.
,
Pilbrow
,
R.
,
Wilson
,
M.
, and
Owen
,
J. M.
,
1999
, “
Flow in a Cover-Plate Pre-Swirl Rotor-Stator System
,”
ASME J. Turbomach.
,
121
, pp.
160−166
, November 24–27.10.1115/1.2841225
5.
Karabay
,
H.
,
Pilbrow
,
R.
,
Wilson
,
M.
, and
Owen
,
J. M.
,
2000
, “
Performance of Pre-Swirl Rotating-Disk Systems
,”
ASME J. Eng. Gas Turbines Power
,
122
, pp.
442−450
.10.1115/1.1285838
6.
Pilbrow
,
R.
,
Karabay
,
H.
,
Wilson
,
M.
, and
Owen
,
J. M.
,
1999
, “
Heat Transfer in a ‘Cover-Plate’ Preswirl Rotating-Disk System
,”
ASME J. Turbomach.
,
121
(2)
, pp.
249
256
.10.1115/1.2841308
7.
Chew
,
J. W.
,
Hills
,
N. J.
,
Khalatov
,
S.
,
Scanlon
,
T.
, and
Turner
,
A. B.
,
2003
, “
Measurements and Analysis of Flow in a Pre-Swirled Cooling Air Delivery System
,”
ASME
Paper No. GT2003-38084. 10.1115/GT2003-38084
8.
Chew
,
J. W.
,
Ciampoli
,
F.
,
Hills
,
N. J.
, and
Scanlon
,
T.
,
2005
, “
Pre-Swirled Cooling Air Delivery System Performance
,”
ASME
Paper No. GT2005-68323. 10.1115/GT2005-68323
9.
Peng
,
Z.
,
New
,
P.
,
Turner
,
A. B.
,
Long
,
C. A.
, and
Childs
,
P. R. N.
,
2007
, “
The Operating Characteristics of a High Radius Pre-Swirl Cooling System
,”
J. Aerosp. Power
,
22
, pp.
849
858
, available at: http://caod.oriprobe.com/articles/12584471/Operating_characteristics_of_a_high_radius_pre_swirl_cooling_system.htm
10.
Javiya
,
U.
,
Chew
,
J. W.
,
Hills
,
N.
, and
Scanlon
,
T.
, “
A Comparative Study of Cascade Vanes and Drilled Nozzle Design For Pre-Swirl
,”
ASME
Paper No. GT2011-46006. 10.1115/GT2011-46006
11.
Lock
,
G. D.
,
Wilson
,
M.
, and
Owen
,
J. M.
,
2005
, “
Influence of Fluid Dynamics on Heat Transfer in a Pre-Swirl Rotating Disk System
,”
ASME J. Eng. Gas Turbines Power
,
127
, pp.
791−797
.10.1115/1.1924721
12.
Kakade
,
V. U.
,
Lock
,
G. D.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Mayhew
,
J. E.
,
2009
, “
Effects of Radial Location of Nozzles on Heat Transfer in Pre-Swirl Cooling Systems
,”
ASME J. Turbomach.
,
133
, p.
021023
.10.1115/1.4001189
13.
Kakade
,
V. U.
,
Lock
,
G. D.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Mayhew
,
J. E.
,
2009
, “
Accurate Heat Transfer Measurements Using Thermochromic Liquid Crystals. Part 1: Calibration and Characteristics of Crystals
,”
Int. J. Heat Fluid Flow
,
30
, pp.
939−949
. 10.1016/j.ijheatfluidflow.2009.04.007
14.
Kakade
,
V. U.
,
Lock
,
G. D.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Mayhew
,
J. E.
,
2009
, “
Accurate Heat Transfer Measurements Using Thermochromic Liquid Crystals Part 2: Application to Rotating Disk
,”
Int. J. Heat Fluid Flow
,
30
, pp.
950−959
.10.1016/j.ijheatfluidflow.2009.04.005
15.
Yan
,
Y.
,
Farzaneh-Gord
,
M.
,
Lock
,
G.
,
Wilson
,
M.
, and
Owen
,
J. M.
,
2003
, “
Fluid Dynamics of a Preswirl Rotor-Stator System
,”
ASME J. Turbomach.
,
125
, pp.
641−647
.10.1115/1.1578502
16.
Farzaneh-Gord
,
M.
,
Wilson
,
M.
, and
Owen
,
J. M.
,
2005
, “
Numerical and Theoretical Study of Flow and Heat Transfer in a Preswirl Rotor-Stator System
,”
ASME
Paper No. GT2005-68135. 10.1115/GT2005-68135
17.
Lewis
,
P.
,
Wilson
,
M.
,
Lock
,
G. D.
, and
Owen
,
J. M.
,
2007
, “
Physical Interpretation of Flow and Heat Transfer in Preswirl Systems
,”
ASME J. Eng. Gas Turbines Power
,
129
, pp.
769−777
.10.1115/1.2436572
18.
Javiya
,
U.
,
Chew
,
J. W.
,
Hills
,
N. J.
,
Lock
,
G. D.
,
Wilson
,
M.
, and
Zhou
,
L.
,
2010
, “
CFD Analysis of Flow and Heat Transfer in a Direct Transfer Pre-Swirl System
,”
ASME J. Turbomach.
,
134
, p.
031017
.10.1115/1.4003229
19.
Smout
,
P. D.
,
Chew
,
J. W.
, and
Childs
,
P. R. N.
,
2002
, “
ICAS-GT: A European Collaborative Research Programme on Internal Cooling Air Systems for Gas Turbines
,”
ASME
Paper No. GT2002-30479. 10.1115/GT2002-30479
20.
Dittmann
,
M.
,
Geis
,
T.
,
Schramm
,
V.
,
Kim
,
S.
, and
Wittig
,
S.
,
2002
, “
Discharge Coefficients of a Preswirl System in Secondary Air Systems
,”
ASME J. Turbomach.
,
124
, pp.
119
124
.10.1115/1.1413474
21.
Geis
,
T.
,
Rottenkolber
,
G.
,
Dittmann
,
M.
,
Richter
,
B.
,
Dullenkopf
,
K.
, and
Wittig
,
S.
,
2002
, “
Endoscopic PIV-Measurements in an Enclosed Rotor-Stator System With Pre-Swirled Cooling Air
,”
11th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
, July 8–11.
22.
Bricaud
,
C.
,
Dullenkopf
,
K.
, and
Bauer
,
H. J.
,
2005
, “
Heat Transfer Measurements at the Rotor Disk of a Direct Transfer Preswirl System
,”
17th International Symposium on Airbreathing Engines
, Munich, Germany, September 4–9, Paper No. ISABE-2005-1073.
23.
Geis
,
T.
,
Dittmann
,
M.
, and
Dullenkopf
,
K.
,
2003
, “
Cooling Air Temperature Reduction in a Direct Transfer Pre-Swirl System
,”
ASME J. Eng. Gas Turbines Power
,
126
, pp.
809
815
.10.1115/1.1765124
24.
Bricaud
,
C.
,
Dullenkopf
,
K.
,
Bauer
,
H. J.
, and
Geis
,
T.
,
2007
, “
Measurement and Analysis of Aerodynamic and Thermodynamic Losses in Preswirl System Arrangements
,”
ASME
Paper No. GT2007-27191. 10.1115/GT2007-27191
25.
Benim
,
A.
,
Bonhoff
,
B.
,
Bricaud
,
C.
,
Brillert
,
D.
, and
Cagan
,
M.
,
2005
, “
Computational Analysis of Flow and Heat Transfer in a Direct Transfer Pre-Swirl System
,”
Sixth European Conference on Turbomachinery,
Lille, France, March 7–11.
26.
Benim
,
A.
,
Brillert
,
D.
, and
Cagan
,
M.
,
2004
, “
Investigation Into the Computational Analysis of Direct Transfer Preswirl Systems for Gas Turbine Cooling
,”
ASME
Paper No. GT2004-54151. 10.1115/GT2004-54151
27.
Ciampoli
,
F.
,
Hills
,
N. J.
,
Chew
,
J. W.
, and
Scanlon
,
T.
,
2008
, “
Unsteady Numerical Simulation of the Flow in a Direct Transfer Preswirl System
,”
ASME
Paper No. GT2008-51198.10.1115/GT2008-51198
28.
Cagan
,
M.
,
Benim
,
A. C.
, and
Gunes
,
D.
,
2009
, “
Computational Analysis of Gas Turbine Pre-Swirl System Operation Characteristics
,”
WSEAS Trans. Fluid Mech.
,
4
(4)
, pp.
117−126
.
29.
Dixon
,
J. A.
,
Verdicchio
,
J. A.
,
Benito
,
D.
,
Karl
,
A.
, and
Tham
,
K. M.
,
2004
, “
Recent Developments in Gas Turbine Component Temperature Prediction Methods, Using Computational Fluid Dynamics and Optimization Tools, in Conjunction With More Conventional Finite Element Analysis Techniques
,”
Proc. Inst. Mech. Eng., Part A
218
, pp.
241
255
.10.1243/0957650041200641
30.
Sun
,
Z.
,
Chew
,
J. W.
, and
Hills
,
N. J.
,
2008
, “
Use of CFD for Thermal Coupling in Aero-Engine Internal Air Systems Applications
,”
The 4th International Symposium on Fluid Machinery and Fluid Engineering
,
Beijing, China
, November 24–27.
31.
Illingworth
,
J. B.
,
Hills
,
N. J.
, and
Barnes
,
C. J.
,
2005
, “
3D Fluid-Solid Heat Transfer Coupling of An Aero-Engine Pre-Swirl System
,”
ASME
Paper No. GT2005-68939. 10.1115/GT2005-68939
32.
Sun
,
Z.
,
Chew
,
J. W.
,
Hills
,
N. J.
,
Volkov
,
K. N.
, and
Barnes
,
C. J.
,
2010
, “
Efficient Finite Element Analysis/Computational Fluid Dynamics Thermal Coupling for Engineering Applications
,”
ASME J. Turbomach.
,
132
(3), p. 031016. 10.1115/1.3147105
33.
Amirante
,
D.
,
Hills
,
N. J.
, and
Barnes
,
C. J.
,
2010
, “
Thermo-Mechanical FEA/CFD Coupling of an Interstage Seal Cavity Using Torsional Spring Analogy
,”
ASME
Paper No. GT2010-22684. 10.1115/GT2010-22864
34.
Ganine
,
V.
,
Javiya
,
U.
,
Hills
,
N. J.
, and
Chew
,
J. W.
,
2012
, “
Coupled Fluid-Structure Transient Analysis of a Gas Turbine Internal Air System With Multiple Cavities
,” ASME Paper No. GT2012-68989.
35.
Lapworth
,
L
.,
2004
, “
Hydra-CFD: A Framework for Collaborative CFD Development
,”
International Conference on Scientific and Engineering Computation (IC-SEC), Singapore, June 30–July 2, Vol. 30.
36.
Martinelli
,
L.
,
1987
, “
Calculations of Viscous Flows With a Multigrid Methods
,” Ph.D. thesis,
Princeton University
,
Princeton
, NJ.
37.
Moinier
,
P.
,
Muller
,
J.-D.
, and
Giles
,
M. B.
,
2002
. “
Edge-Based Multigrid and Preconditioning for Hybrid Grids
,”
AIAA J.
,
40
(
10
), pp.
1954
1960
.10.2514/2.1556
38.
Hills
,
N.
,
2007
. “
Achieving High Parallel Performance for an Unstructured Unsteady Turbomachinery CFD Code
,”
Aeronaut. J.
,
111
, pp.
185
193
, available at: http://aerosociety.com/News/Publications/Aero-Journal/Online/496/Achieving-high-parallel-performance-for-an-unstructured-unsteady-turbomachinery-CFD-code
39.
Margason
,
R. J.
,
1993
, “
Fifty Years of Jet in Crossflow Research
,”
In AGARD Symp. on a Jet in Cross Flow
,
Winchester
,
UK
, Paper No. AGARD CP-534.
40.
Armstrong
,
I.
, and
Edmunds
,
T. M.
,
1989
, “
Fully Automatic Analysis in the Industrial Environment
,”
Proceedings of the Second International Conference on Quality Assurance and Standards
, NAFEMS, Stratford-upon-Avon, UK.
You do not currently have access to this content.