An integrated creep rupture strength degradation and water vapor degradation model for gas turbine oxide-based ceramic matrix composite (CMC) combustor liners was expanded with heat transfer computations to establish the maximum turbine rotor inlet temperature (TRIT) for gas turbines with 10:1 pressure ratio. Recession rates and average CMC operating temperatures were calculated for an existing baseline N720/A (N720/Al2O3) CMC combustor liner system with and without protective Al2O3 friable graded insulation (FGI) for 30,000-h liner service life. The potential for increasing TRIT by Y3Al5O12 (YAG) substitution for the fiber, matrix, and FGI constituents of the CMC system was explored, because of the known superior creep and water vapor degradation resistance of YAG compared to Al2O3. It was predicted that uncoated N720/A can be used as a combustor liner material up to a TRIT of ∼1200  °C, offering no TRIT advantage over a conventional metal + thermal barrier coating (TBC) combustor liner. A similar conclusion was previously reached for a SiC/SiC CMC liner with barium strontium aluminum silicate (BSAS)-type environmental barrier coating (EBC). The existing N720/A + Al2O3 FGI combustor liner system can be used at a maximum TRIT of ∼1350  °C, a TRIT increase over metal + TBC, and uncoated N720/A of ∼150  °C. Replacing the Al2O3 with YAG is predicted to increase the maximum allowable TRIT. Substitution of the fiber or matrix in N720/A increases TRIT by ∼100  °C. A YAG FGI improves the TRIT of the N720/A + Al2O3 FGI by ∼50  °C, enabling a TRIT of ∼1400 °C, similar to that predicted for SiC/SiC CMCs with protective rare earth monosilicate EBCs.

References

References
1.
van Roode
,
M.
,
Ferber
,
M. K.
, and
Richerson
,
D. W.
, eds.,
2002
, “
Ceramic Gas Turbine Design and Test Experience
,”
Progress in Ceramic Gas Turbine Development
, Vol. I,
ASME
,
New York
.
2.
van Roode
,
M.
,
Ferber
,
M. K.
, and
Richerson
,
D. W.
, eds.,
2003
, “
Ceramic Gas Turbine Component Development and Characterization
,”
Progress in Ceramic Gas Turbine Development
,
Vol. II
,
ASME
, New York.
3.
Richerson
,
D. W.
,
2004
, “
Ceramic Components in Gas Turbine Engines: Why Has It Taken So Long?
,”
Ceram. Eng. Sci. Proc.
,
25
(
3
), pp.
3
32
.10.1002/SERIES2122
4.
Richerson
,
D. W.
,
2006
, “
Historical Review of Addressing the Challenges of Use of Ceramic Components in Gas Turbine Engines
,” ASME Paper No. GT2006-90330.
5.
DiCarlo
,
J. A.
and
van Roode
,
M.
,
2006
, “
Ceramic Composite Development for Gas Turbine Engine Hot Section Components
,” ASME Paper No. GT2006-90151.
6.
Robinson
,
R. C.
,
1997
, “
SiC Recession Due to Scale Volatility Under Combustor Conditions
,” NASA Contractor Report No. 202331.
7.
Smialek
,
J. L.
,
Robinson
,
R. C.
,
Opila
,
E. J.
,
Fox
,
D. S.
, and
Jacobson
,
N. S.
,
1999
, “
SiC and Si3N4 Recession Due to Volatility Under Combustor Conditions
,”
Adv. Comp. Math.
,
8
(
1
), pp.
33
45
.10.1163/156855199X00056
8.
van Roode
,
M.
, and
Ferber
,
M. K.
,
2007
, “
Long-Term Degradation of Ceramics for Gas Turbine Applications
,”
ASME
Paper No. GT2007-27956.
9.
DiCarlo
,
J. A.
, and
Yun
,
H. M.
,
2000
, “
Modeling the Thermostructural Capability of Continuous Fiber-Reinforced Ceramic Composites
,” ASME Paper No. 2000-GT-640.
10.
Eaton
,
H. E.
,
Linsey
,
G. D.
,
More
,
K. L.
,
Kimmel
,
J. B.
,
Price
,
J. R.
, and
Miriyala
,
N.
,
2000
, “
EBC Protection of SiC/SiC Composites in the Gas Turbine Combustion Environment
,” ASME Paper No. 2000-GT-631.
11.
van Roode
,
M.
,
Price
,
J. R.
,
Kimmel
,
J.
,
Miriyala
,
N.
,
Leroux
,
D.
,
Fahme
,
A.
, and
Smith
,
K.
,
2007
, “
Ceramic Matrix Composite Combustor Liners: A Summary of Field Evaluations
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
21
30
.10.1115/1.2181182
12.
Corman
,
G.
,
Luthra
,
K.
,
Mitchell
,
D.
,
Meschter
,
R.
,
Nimmer
,
R.
,
Bruce
,
K.
, and
Landini
,
D.
,
2004
, “
Melt Infiltrated CMC Gas Turbine Shroud Development and Testing
,”
28th Annual Conference on Composites
,
Materials and Structures
,
Cocoa Beach, Florida
,
27–31 January
.
13.
Lane
,
J. E.
,
Morrison
,
J. A.
,
Marini
,
B.
, and
Campbell
,
C. X.
,
2007
, “
Hybrid Oxide-Based CMCs for Combustion Turbines: How Hybrid Oxide CMC Mitigates the Design Hurdles Typically Seen for Oxide CMC
,” ASME Paper No. GT2007-27532.
14.
van Roode
,
M.
,
Price
,
J. R.
,
Otsuka
,
J.
,
Szweda
,
A.
,
More
,
K. L.
, and
Sun
,
J. G.
,
2008
, “
25,000-Hour Hybrid Oxide Combustor Liner Field Test Summary
,” ASME Paper No. GT2008-51379.
15.
More
,
K.
,
Walker
,
L. R.
,
Brummett
,
T.
,
van Roode
,
M.
,
Price
,
J. R.
,
Szweda
,
A.
, and
Merrill
,
G.
,
2009
, “
Microstructural and Mechanical Characterization of a Hybrid Oxide CMC Combustor Liner After 25,000-Hour Engine Test
,” ASME Paper No. GT2009-59223.
16.
Ferber
,
M. K.
, and
van Roode
,
M.
,
2007
, “
Application of Ceramics for Gas Turbines
,”
31st International Cocoa Beach Conference & Exposition on Advanced Ceramics and Composites
,
Daytona Beach, Florida
,
21–26 January
.
17.
van Roode
,
M.
,
Bhattacharya
,
A.
, and
Ferber
,
M. K.
,
2009
, “
Durability Prediction of Alumina- and YAG-Based CMC Combustor Liners
,” ASME Paper No. GT2009-59690.
18.
van Roode
,
M.
,
Bhattacharya
,
A.
,
Ferber
,
M. K.
, and
Abdi
,
F.
,
2010
, “
Creep Resistance and Water Vapor Degradation of SiC/SiC Ceramic Matrix Composite Gas Turbine Hot Section Components
,” ASME Paper No. GT2010-23012.
19.
Wilson
,
D. M.
,
2002
, “
New High Temperature Oxide Fibers
,”
High Temperature Ceramic Matrix Composites, HT-CMC4
,
W.
Krenkel
,
R.
Naslain
,
H.
Schneider
, eds.,
Wiley VH
,
Munich Germany
.
20.
ATK COIC Ceramics
,
2006
, private communication.
21.
Ruggles-Wrenn
,
M. B.
, and
Braun
,
J. C.
,
2008
, “
Effects of Steam Environment on Creep Behavior of Nextel™/Alumina Ceramic Composite at Elevated Temperature
,”
Mater. Sci. Eng., A
,
497
, pp.
101
110
.10.1016/j.msea.2008.06.036
22.
Keller
,
K. A.
,
Jefferson
,
G.
, and
Kerans
,
R. J.
,
2005
, “
Oxide-Oxide Composites
,”
Handbook of Ceramic Composites
,
N. P.
Bansal
, ed.,
Kluwer Academic Publishers
,
New York
, pp.
377
421
.
23.
Dickey
,
E. C.
,
Frazer
,
C. S.
,
Watkins
,
T. R.
, and
Hubbard
,
C. R.
,
1999
, “
Residual Stresses in High-Temperature Ceramic Eutectics
,”
J. Eur. Ceram. Soc.
,
19
, pp.
2503
2509
.10.1016/S0955-2219(99)00100-4
24.
Opila
,
E. J.
, and
Myers
,
D. L.
,
2004
, “
Alumina Volatility in Water Vapor at Elevated Temperatures
,”
J. Amer. Ceram. Soc.
,
87
(
9
), pp.
1701
1705
.10.1111/j.1551-2916.2004.01701.x
25.
Opila
,
E.
, and
Myers
,
D.
,
2003
, “
Alumina Volatility in Water Vapor at Elevated Temperatures
,”
Environmental Barrier Coatings for Microturbine and Industrial Gas Turbine Ceramics Workshop
, Nashville, Tennessee, 18–19 November.
26.
Fritsch
,
M.
,
Klemm
,
H.
,
Herrmann
,
M.
, and
Schenk
,
B.
,
2006
, “
Corrosion of Selected Ceramic Materials in Hot Gas Environment
,”
J. Eur. Ceram. Soc.
,
26
, pp.
3557
3565
.10.1016/j.jeurceramsoc.2006.01.015
27.
Szweda
,
A.
,
Butner
,
S.
,
Ruffoni
,
J.
,
Bacalski
,
C.
,
Layne
,
J.
,
Morrison
,
J.
,
Merrill
,
G.
,
van Roode
,
M.
,
Fahme
,
A.
,
Leroux
,
D.
, and
Miriyala
,
N.
,
2005
, “
Development and Evaluation of Hybrid Oxide/Oxide Ceramic Matrix Composite Combustor Liners
,” ASME Paper No. GT2005-68496.
28.
Parthasarathy
,
T. A.
,
2011
, private communication.
29.
Szweda
,
A.
,
COI Ceramics, 2011–2012, private communication
.
30.
Golombok
,
M.
, and
Shirvill
,
L. C.
,
1988
, “
Emissivity of Layered Fibrous Materials
,
Appl. Opt.
,
27
(
18
), pp.
3921
3925
.10.1364/AO.27.003921
31.
Su
,
Y. J.
,
Trice
,
R. W.
,
Faber
,
K. T.
,
Wang
,
H.
, and
Poter
,
W. D.
,
2004
, “
Thermal Conductivity, Phase Stability, and Oxidation Resistance of Y3Al5O12 (YAG)/Y2O3-ZrO2 (YSZ) Thermal-Barrier Coatings
,”
Oxid. Metals
,
61
(
3/4
), pp.
253
271
.10.1023/B:OXID.0000025334.02788.d3
32.
Lu
,
J.
,
Lu
,
J.
,
Murai
,
T.
,
Takaichi
,
T.
,
Uematsu
,
T.
,
Ueda
,
K.
,
Yagi
,
H.
,
Yanagitani
,
T.
,
Akiyama
,
A.
, and
Kaminskii
,
A. A.
,
2002
, “
Development of Nd: YAG Ceramic Lasers
,”
OSA TOPS Vol. 68, Advanced Solid-State Lasers
,
Martin E.
Fermann
and
Larry R.
Marshall
, eds., p.
507
.
33.
“Thermophysical Properties of Fluid Systems,” NIST Chemistry WebBook, NIST Standard Reference Database Number 69, http://webbook.nist.gov/cgi/fluid/
34.
Lee
,
K. N.
,
Fox
,
D. S.
, and
Bansal
,
N. P.
,
2005
, “
Rare Earth Silicate Environmental Barrier Coatings for SiC/SiC Composites and Si3N4 Ceramics
,”
J. Eur. Ceram. Soc.
,
25
, pp.
1705
1715
.10.1016/j.jeurceramsoc.2004.12.013
35.
Klemm
,
K.
,
2010
, “
Silicon Nitride for High-Temperature Applications
,”
J. Am. Ceram. Soc.
,
93
(
6
), pp.
1501
1522
.10.1111/j.1551-2916.2010.03839.x
36.
Parthasarathy
,
T. A.
,
Mah
,
T.
, and
Matson
,
L. E.
,
2004
, “
Processing, Structure and Properties of Alumina-YAG Eutectic Composites
,”
J. Ceram. Proc. Res.
,
5
(
4
), pp.
380
390
.
37.
Mah
,
T.-I.
,
Parthasarathy
,
T.
, and
Lee
,
H. D.
,
2004
, “
Polycrystalline YAG: Structural or Functional
,”
J. Ceram. Proc. Res.
,
5
(
4
), pp.
369
379
.
38.
Liu
,
Y.
,
Zhang
,
Z.-F.
,
Halloran
,
J.
, and
Laine
,
R. M.
,
1998
, “
Yttrium Aluminum Garnet Fibers From Metalloorganic Precursors
,”
J. Am. Ceram. Soc.
,
81
(
3
), pp.
629
645
.10.1111/j.1151-2916.1998.tb02383.x
You do not currently have access to this content.