The design and optimization of an efficient internal air system of a gas turbine requires a thorough understanding of the flow and heat transfer in rotating disc cavities. The present study is devoted to the numerical modeling of flow and heat transfer in a cylindrical cavity with radial inflow and a comparison with the available experimental data. The simulations are carried out with axisymmetric and 3-D sector models for various inlet swirl and rotational Reynolds numbers up to 1.2 × 106. The pressure coefficients and Nusselt numbers are compared with the available experimental data and integral method solutions. Two popular eddy viscosity models, the Spalart–Allmaras and the k-ɛ, and a Reynolds stress model have been used. For cases with particularly strong vortex behavior the eddy viscosity models show some shortcomings, with the Spalart–Allmaras model giving slightly better results than the k-ɛ model. Use of the Reynolds stress model improved the agreement with measurements for such cases. The integral method results are also found to agree well with the measurements.

References

References
1.
Owen
,
J. M.
, and
Wilson
,
M.
,
2001
, “
Some Current Research in Rotating-Disc Systems
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
206
221
.10.1111/j.1749-6632.2001.tb05853.x
2.
Owen
,
J. M.
,
Pincombe
,
J. R.
, and
Rogers
,
R. H.
,
1985
, “
Source-Sink Flow Inside a Rotating Cavity
,”
J. Fluid Mech.
,
155
, pp.
233
265
.10.1017/S0022112085001793
3.
Hide
,
R.
,
1968
, “
On Source-Sink Flows in a Rotating Fluid
,”
J. Fluid Mech.
,
32
, pp.
737
764
.10.1017/S002211206800100X
4.
Wormley
,
D. N.
,
1969
, “
An Analytical Model for the Incompressible Flow in Short Vortex Chambers
,”
ASME J. Basic Eng.
,
91
(2)
, pp.
264
272
.10.1115/1.3571091
5.
Chew
,
J. W.
, and
Snell
,
R. J.
,
1988
, “
Prediction of the Pressure Distribution for Radial Inflow Between Co-Rotating Discs
,”
ASME GT and Aeroengine Congress
,
Amsterdam
, June 5–9, ASME Paper No. 88-GT-61, p. 9.
6.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1995
, “
Flow and Heat Transfer in Rotating-Disc Systems, Volume 2: Rotating Cavities
,” Mechanical Engineering Research Studies (Engineering Design Series), Research Studies Press, Somerset, UK/John Wiley & Sons Inc., New York.
7.
Shevchuk
,
I. V.
,
2009
, “
Convective Heat and Mass Transfer in Rotating Disk Systems
,” Lecture Notes in Applied and Computational Mechanics, Vol. 45, Springer, Heidelberg, Germany.10.1007/978-3-642-00718-7
8.
Childs
,
P. R. N.
,
2010
,
Rotating Flows
,
Butterworth-Heinemann
,
London
.
9.
Firouzian
,
M.
,
Owen
,
J. M.
,
Pincombe
,
J. R.
, and
Rogers
,
R. H.
,
1985
, “
Flow and Heat Transfer in a Rotating Cavity With a Radial Inflow of Fluid—Part 1: The Flow Structure
,”
Int. J. Heat Fluid Flow
,
6
(
4
), pp.
228
234
.10.1016/0142-727X(85)90054-2
10.
Firouzian
,
M.
,
Owen
,
J. M.
,
Pincombe
,
J. R.
, and
Rogers
,
R. H.
,
1986
, “
Flow and Heat Transfer in a Rotating Cavity With a Radial Inflow of Fluid—Part 2: Velocity, Pressure and Heat Transfer Measurements
,”
Int. J. Heat Fluid Flow
,
7
(
1
), pp.
21
27
.10.1016/0142-727X(86)90037-8
11.
Farthing
,
P. R.
,
Chew
,
J. W.
, and
Owen
,
J. M.
,
1991
, “
The Use of De-Swirl Nozzles to Reduce the Pressure Drop in a Rotating Cavity With a Radial Inflow
,”
ASME J. Turbomach.
,
113
(
1
), pp.
106
114
.10.1115/1.2927727
12.
Chew
,
J. W.
,
Farthing
,
P. R.
,
Owen
,
J. M.
, and
Stratford
,
B.
,
1989
, “
The Use of Fins to Reduce the Pressure Drop in a Rotating Cavity With a Radial Inflow
,”
ASME J. Turbomach.
,
111
(
3
), pp.
349
356
.10.1115/1.3262279
13.
Volchkov
,
E. P.
,
Semenov
,
S. V.
, and
Terekov
,
V.
,
1991
, “
Heat Transfer and Shear Stress at the End Wall of a Vortex Chamber
,”
Exp. Therm. Fluid Sci.
,
4
(
5
), pp.
546
557
.10.1016/0894-1777(91)90033-N
14.
Farthing
,
P. R.
,
1989
, “
The Effect of Geometry on Flow and Heat Transfer in a Rotating Cavity
,” D. Phil. thesis, University of Sussex, Brighton, UK.
15.
Morse
,
A. P.
,
1988
, “
Numerical Prediction of Turbulent Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
110
, pp.
202
211
.10.1115/1.3262181
16.
Young
,
C.
, and
Snowsill
,
G. D.
,
2003
, “
CFD Optimization of Cooling Air Offtake Passages Within Rotor Cavities
,”
ASME J. Turbomach.
,
125
(
2
), pp.
380
386
.10.1115/1.1556405
17.
Gosman
,
A. D.
,
Lockwood
,
F. C.
, and
Loughhead
,
J. N.
,
1976
, “
Prediction of Recirculating, Swirling Flow in Rotating Disc Systems
,”
J. Mech. Eng. Sci.
,
18
(
3
), pp.
142
148
.10.1243/JMES_JOUR_1976_018_024_02
18.
Chew
,
J. W.
,
1984
, “
Prediction of Flow in Rotating Disc Systems Using the k-ε Turbulence Model
,”
ASME Gas Turbine Conference
,
Amsterdam
, June 4–7, ASME Paper No. 84-GT-229.
19.
Dacles-Mariani
,
J.
,
Zilliac
,
G. G.
,
Chow
,
J. S.
, and
Bradshaw
,
P.
,
1995
, “
Numerical/Experimental Study of a Wingtip Vortex in the Near Field
,”
AIAA J.
,
33
(
9
), pp.
1561
1568
.10.2514/3.12826
20.
Spalart
,
P. R.
, and
Shur
,
M.
,
1997
, “
On the Sensitization of Turbulence Models to Rotation and Curvature
,”
Aerosp. Sci. Technol.
,
1
(
5
), pp.
297
302
.10.1016/S1270-9638(97)90051-1
21.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aerosp.
,
1
, pp.
5
21
.
22.
Torii
,
S.
, and
Yang
,
W. J.
,
1995
, “
Numerical Prediction of Fully Developed Turbulent Swirling Flows in an Axially Rotating Pipe by Means of a Modified k-ε Turbulence Model
,”
Int. J. Numer. Methods Heat Fluid Flow
,
5
(
2
), pp.
175
183
.10.1108/EUM0000000004116
23.
Smirnov
,
P. E.
, and
Menter
,
F. R.
,
2009
, “
Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Correction Term
,”
ASME J. Turbomach.
,
131
(
4
), p.
8
.10.1115/1.3070573
24.
Iacovides
,
H.
, and
Toumpanakis
,
P.
,
1993
, “
Turbulence Modeling of Flows in Axisymmetric Rotor-Stator Systems
,”
Proceedings of the 5th International Symposium On Refined Flow Modeling Turbulence Measurements
,
Paris
, September 7–10, p.
835
.
25.
Elena
,
L.
, and
Schiestel
,
R.
,
1996
, “
Turbulence Modeling of Rotating Confined Flows
,”
Int. J. Heat Fluid Flow
,
17
, pp.
283
289
.10.1016/0142-727X(96)00032-X
26.
Chen
,
J. C.
, and
Lin
,
C. A.
,
1999
, “
Computations of Strongly Swirling Flows With Second-Moment Closures
,”
Int. J. Numer Methods Fluids
,
30
(
5
), pp.
493
508
.10.1002/(SICI)1097-0363(19990715)30:5<493::AID-FLD849>3.0.CO;2-3
27.
Virr
,
G. P.
,
Chew
,
J. W.
, and
Coupland
,
J.
,
1994
, “
Application of Computational Fluid Dynamics to Turbine Disc Cavities
,”
ASME J. Turbomach.
,
116
(
4
), pp.
701
708
.10.1115/1.2929463
28.
Soghe
,
R. D.
,
Innocenti
,
L.
,
Andreini
,
A.
, and
Poncet
,
S.
,
2010
, “
Numerical Benchmark of Turbulence Modeling in Gas Turbine Rotor-Stator System
,” Proceedings of the ASME Turbo Expo 2010: Power for Land Sea and Air (GT2010), Glasgow, UK, June 14–18,
ASME
Paper No. GT2010-22627, pp.
771
783
.10.1115/GT2010-22627
29.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
30.
Karman
,
von. Th.
,
1924
, “
Uber Laminare und Turbulente Reibung
,”
ZAMM
,
1
(
4
), pp.
233
252
.
31.
Chew
,
J. W.
,
1987
, “
Computation of Flow and Heat Transfer in Rotating Disc Systems
,”
Proceedings of the 2nd ASME-JSME Thermal Engineering Conference
,
Honolulu, HI, March 22–27
, pp.
361
367
.
32.
Chew
,
J. W.
, and
Rogers
,
R. H.
,
1988
, “
An Integral Method for the Calculation of Turbulent Forced Convection in a Rotating Cavity With Radial Outflow
,”
Int. J. Heat Fluid Flow
,
9
(
1
), pp.
37
48
.10.1016/0142-727X(88)90028-8
33.
May
,
N. E.
,
Chew
,
J. W.
, and
James
,
P. W.
,
1994
, “
Calculation of Turbulent Flow for an Enclosed Rotating Cone
,”
ASME J. Turbomach.
,
116
(
3
), pp.
548
554
.10.1115/1.2929444
34.
Moinier
,
P.
,
1999
, “
Algorithm Developments for an Unstructured Viscous Flow Solver
,” D. Phil. thesis, University of Oxford, Oxford, UK.
35.
FLUENT, 2006, “FLUENT 6.3 Documentation,” ANSYS, Inc
., Canonsburg, PA.
36.
Javiya
,
U.
,
Chew
,
J. W.
,
Hills
,
N. J.
,
Zhou
,
L.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2011
, “
CFD Analysis of Flow and Heat Transfer in a Direct Transfer Preswirl System
,”
ASME J. Turbomach.
,
134
(
3
), p.
031017
.10.1115/1.4003229
37.
Howard
,
J. H. G.
,
Patankar
,
S. V.
, and
Bordynuik
,
R. M.
,
1980
, “
Flow Prediction in Rotating Ducts Using Coriolis-Modified Turbulence Models
,”
ASME J. Fluids Eng.
,
102
, pp.
456
461
.10.1115/1.3240725
38.
Shur
,
M. L.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2000
, “
Turbulence Modelling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction
,”
AIAA J.
,
38
(
5
), pp.
784
792
.10.2514/2.1058
39.
Iaccarino
,
G.
,
Ooi
,
A.
,
Reif
,
B. A. P.
, and
Durbin
,
P.
,
1999
, “
RANS Simulations of Rotating Flows
,” Annual Research Briefs, Center for Turbulence Research, Stanford, CA.
40.
Poncet
,
S.
,
Soghe
,
R. D.
, and
Facchini
,
B.
,
2010
, “
RANS Modelling of Flow in Rotating Cavity System
,”
Fifth European Conference on Computational Fluid Dynamics (ECCOMAS CFD), Lisbon, Portugal, June 14–17
.
You do not currently have access to this content.