A typical monolithic catalyst consists of long, narrow, square channels containing a washcoat of catalytic material. While this geometry is the most common, other shapes may be better suited for particular applications. Of interest are hexagonal, triangular, and circular channel geometries. This paper provides a succinct review of these channel shapes and their associated heat and mass transfer correlations when used in a one plus one-dimensional model including diffusion in the washcoat. In addition, a summary of the correlations for different mechanical and thermal stresses and strains are included based on channel geometry. By including the momentum equation in the model formulation with geometry specific friction factors, this work illustrates a unique optimization procedure for light off, pressure drop, and lifetime operation according to a desired set of catalyst specifications. This includes the recalculation of washcoat thickness and flow velocity through the channels when cell density changes.

References

References
1.
Heck
,
R. H.
,
Farrauto
,
R. J.
, and
Gulati
,
S. T.
,
2009
,
Catalytic Air Pollution Control: Commercial Technology
,
Wiley
,
New York
.
2.
Depcik
,
C.
, and
Assanis
,
D.
,
2005
, “
One-Dimensional Automotive Catalyst Modeling
,”
Prog. Energy Combust. Sci.
,
31
(
4
), pp.
308
369
.10.1016/j.pecs.2005.08.001
3.
Hayes
,
R. E.
, and
Kolaczkowski
,
S. T.
,
1999
, “
A Study of Nusselt and Sherwood Numbers in a Monolith Reactor
,”
Catal. Today
,
47
(
1-4
), pp.
295
303
.10.1016/S0920-5861(98)00310-1
4.
Hayes
,
R. E.
, and
Kolaczkowski
,
S. T.
,
1994
, “
Mass and Heat Transfer Effects in Catalytic Monolith Reactors
,”
Chem. Eng. Sci.
,
49
(
21
), pp.
3587
3599
.10.1016/0009-2509(94)00164-2
5.
Kapas
,
N.
,
Shamim
,
T.
, and
Laing
,
P.
,
2011
, “
Effect of Mass Transfer on the Performance of Selective Catalytic Reduction (SCR) Systems
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), p.
032801
.10.1115/1.4001766
6.
Groppi
,
G.
, and
Tronconi
,
E.
,
1997
, “
Theoretical Analysis of Mass and Heat Transfer in Monolith Catalyst With Triangular Channels
,”
Chem. Eng. Sci.
,
52
(
20
), pp.
3521
3526
.10.1016/S0009-2509(97)00153-X
7.
Heibel
,
A. K.
,
Heiszwolf
,
J. J.
,
Kapteijn
,
F.
, and
Moulijn
,
J. A.
,
2001
, “
Influence of Channel Geometry on Hydrodynamics and Mass Transfer in the Monolith Film Flow Reactor
,”
Catal. Today
,
69
(
1-4
), pp.
153
163
.10.1016/S0920-5861(01)00391-1
8.
Gulati
,
S.
,
2000
, “
Design Considerations for Advanced Ceramic Catalyst Supports
,” SAE Paper No. 2000-01-0493.
9.
Koltsakis
,
G. C.
, and
Stamatelos
,
A. M.
,
1997
, “
Catalytic Automotive Exhaust Aftertreatment
,”
Prog. Energy Combust. Sci.
,
23
(
1
), pp.
1
39
.10.1016/S0360-1285(97)00003-8
10.
Byrne
,
H.
, and
Norbury
,
J.
,
1993
, “
Mathematical Modelling of Catalytic Converters
,”
Math. Eng. Ind.
,
4
(
1
), pp.
27
48
.
11.
Fox
,
R.
,
Mcdonald
,
A.
, and
Pritchard
,
P.
,
2003
,
Introduction to Fluid Mechanics
,
Wiley
,
Hoboken, NJ
.
12.
Kee
,
R. J.
,
Coltrin
,
M. E.
, and
Glarborg
,
P.
,
2003
,
Chemically Reacting Flow: Theory and Practice
,
Wiley
,
Hoboken, NJ
.
13.
Depcik
,
C.
,
Van Leer
,
B.
, and
Assanis
,
D.
,
2005
, “
The Numerical Simulation of Variable-Property Reacting-Gas Dynamics: New Insights and Validation
,”
Numer. Heat Transfer, Part A
,
47
(
1
), pp.
27
56
.10.1080/10407780490520823
14.
Balakotaiah
,
V.
,
2008
, “
On the Relationship Between Aris and Sherwood Numbers and Friction and Effectiveness Factors
,”
Chem. Eng. Sci.
,
63
(
24
), pp.
5802
5812
.10.1016/j.ces.2008.08.025
15.
Heck
,
R. H.
,
Wei
,
J.
, and
Katzer
,
J. R.
,
1976
, “
Mathematical Modeling of Monolithic Catalysts
,”
AIChE J.
,
22
(
3
), pp.
477
484
.10.1002/aic.690220310
16.
Lee
,
S. T.
, and
Aris
,
R.
,
1977
, “
On the Effects of Radiative Heat Transfer in Monolith
,”
Chem. Eng. Sci.
,
32
(
8
), pp.
827
837
.10.1016/0009-2509(77)80068-7
17.
Groppi
,
G.
,
Belloli
,
A.
,
Tronconi
,
E.
, and
Forzatti
,
P.
,
1995
, “
A Comparison of Lumped and Distributed Models of Monolith Catalytic Combustors
,”
Chem. Eng. Sci.
,
50
(
17
), pp.
2705
2715
.10.1016/0009-2509(95)00099-Q
18.
Depcik
,
C.
,
Kobiera
,
A.
, and
Assanis
,
D.
,
2010
, “
Influence of Density Variation on One-Dimensional Modeling of Exhaust Assisted Catalytic Fuel Reforming
,”
Heat Transfer Eng.
,
31
(
13
), pp.
1098
1113
.10.1080/01457631003640396
19.
Depcik
,
C.
, and
Loya
,
S.
,
2012
, “
Dynamically Incompressible Flow
,”
Advanced Methods for Practical Applications in Fluid Mechanics
,
InTech
,
Rijeka, Croatia
.
20.
Depcik
,
C.
, and
Srinivasan
,
A.
,
2011
, “
One + One-Dimensional Modeling of Monolithic Catalytic Converters
,”
Chem. Eng. Technol.
,
34
(
12
), pp.
1949
1965
.10.1002/ceat.201100144
21.
Oh
,
S. H.
, and
Cavendish
,
J. C.
,
1982
, “
Transients of Monolithic Catalytic Converters: Response to Step Changes in Feedstream Temperature as Related to Controlling Automobile Emissions
,”
Ind. Eng. Chem. Res.
,
21
(
1
), pp.
29
37
.10.1021/i300005a006
22.
Chen
,
D. K. S.
,
Oh
,
S. H.
,
Bissett
,
E. J.
, and
Van Ostrom
,
D. L.
,
1988
, “
A Three-Dimensional Model for the Analysis of Transient Thermal and Conversion Characteristics of Monolithic Catalytic Converters
,” SAE Paper No. 880282.
23.
Hayes
,
R. E.
,
Kolaczkowski
,
S. T.
,
Li
,
P. K.
, and
Awdry
,
C. S.
,
2000
, “
Evaluating the Effective Diffusivity of Methane in the Washcoat of a Honeycomb Monolith
,”
Appl. Catal., B
,
25
(
2-3
), pp.
93
104
.10.1016/S0926-3373(99)00122-8
24.
Heck
,
R. H.
,
Wei
,
J.
, and
Katzer
,
J. R.
,
1976
, “
Mathematical Modeling of Monolithic Catalysts
,”
AIChE J.
,
22
(
3
), pp.
477
484
.10.1002/aic.690220310
25.
Roy
,
S.
,
Heibel
,
A. K.
,
Liu
,
W.
, and
Boger
,
T.
,
2004
, “
Design of Monolithic Catalysts for Multiphase Reactions
,”
Chem. Eng. Sci.
,
59
(
5
), pp.
957
966
.10.1016/j.ces.2003.12.001
26.
Groppi
,
G.
, and
Tronconi
,
E.
,
2000
, “
Design of Novel Monolith Catalyst Supports for Gas/Solid Reactions With Heat Exchange
,”
Chem. Eng. Sci.
,
55
(
12
), pp.
2161
2171
.10.1016/S0009-2509(99)00440-6
27.
Cao
,
L.
,
Ratts
,
J. L.
,
Yezerets
,
A.
,
Currier
,
N. W.
,
Caruthers
,
J. M.
,
Ribeiro
,
F. H.
, and
Delgass
,
W. N.
,
2008
, “
Kinetic Modeling of NOx Storage/Reduction on Pt/BaO/Al2O3 Monolith Catalysts
,”
Ind. Eng. Chem. Res.
,
47
(
23
), pp.
9006
9017
.10.1021/ie8001809
28.
Flytzani-Stephanopoulos
,
M.
,
Voecks
,
G. E.
, and
Charng
,
T.
,
1986
, “
Modelling of Heat Transfer in Non-Adiabatic Monolith Reactors and Experimental Comparisons of Metal Monoliths With Packed Beds
,”
Chem. Eng. Sci.
,
41
(
5
), pp.
1203
1212
.10.1016/0009-2509(86)87093-2
29.
Gulati
,
S.
,
1988
, “
Cell Design for Ceramic Monoliths for Catalytic Converter Application
,” SAE Paper No. 881685.
30.
Schmidt
,
J.
,
Waltner
,
A.
,
Loose
,
G.
,
Hirschmann
,
A.
,
Wirth
,
A.
,
Mueller
,
W.
,
van den Tillaart
,
J. A. A.
,
Mussmann
,
L.
,
Linder
,
D.
,
Gieshoff
,
J.
,
Umehara
,
K.
,
Makino
,
M.
,
Biehn
,
K. P.
, and
Kunz
,
A.
,
1999
, “
The Impact of High Cell Density Ceramic Substrates and Washcoat Properties on the Catalytic Activity of Three Way Catalysts
,” SAE Paper No. 1999-01-0272.
31.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
32.
Gulati
,
S. T.
,
1999
, “
Thin Wall Ceramic Catalyst Supports
,” SAE Paper No. 1999-01-0269.
33.
Gulati
,
S. T.
,
1999
, “
Performance Parameters for Advanced Ceramic Catalyst Supports
,” SAE Paper No. 1999-01-3631.
34.
Gulati
,
S. T.
,
Leonhard
,
T.
, and
Roe
,
T. A.
,
2001
, “
Shear Strength of Cordierite Ceramic Catalyst Supports
,” SAE Paper No. 2001-01-0935.
35.
Day
,
J. P.
,
1990
, “
The Design of a New Ceramic Catalyst Support
,” SAE Paper No. 902167.
36.
Gulati
,
S.
,
1975
, “
Effects of Cell Geometry on Thermal Shock Resistance of Catalytic Monoliths
,” SAE Paper No. 750171.
37.
Gulati
,
S.
,
Zak
,
M. E.
,
Jones
,
L. F.
,
Rieck
,
J. S.
,
Russ
,
M.
, and
Brady
,
M. J.
,
1999
, “
Thermal Shock Resistance of Standard and Thin Wall Ceramic Catalysts
,” SAE Paper No. 1999-01-0273.
38.
Gulati
,
S.
,
Williamson
,
B.
,
Nunan
,
J.
,
Andersen
,
K.
, and
Best
,
J. M.
,
1998
, “
Fatigue and Performance Data for Advanced Thin Wall Ceramic Catalysts
,” SAE Paper No. 980670.
39.
Gulati
,
S.
,
Widjaja
,
S.
,
Xu
,
W.
,
Treacy
,
D. R.
, and
Yorio
,
J. A.
,
2004
, “
Isostatic Strength of Extruded Cordierite Ceramic Substrates
,” SAE Paper No. 2004-01-1135.
40.
Gulati
,
S.
,
1985
, “
Long-Term Durability of Ceramic Honeycombs for Automotive Emissions Control
,” SAE Paper No. 850130.
41.
Hunt
,
H. E. M.
,
1993
, “
The Mechanical Strength of Ceramic Honeycomb Monoliths as Determined by Simple Experiments
,”
Chem. Eng. Res. Des.
,
71
(
A3
), pp.
257
266
.
42.
Gulati
,
S.
,
Brady
,
M. J.
,
Willson
,
P. J.
, and
Yee
,
M. C.
,
1988
, “
Thermal Shock Resistance of Oval Monolithic Heavy Duty Truck Converters
,” SAE Paper No. 880101.
43.
Gulati
,
S.
,
1983
, “
Thermal Stresses in Ceramic Wall Flow Diesel Filters
,” SAE Paper No. 830079.
44.
Gulati
,
S.
,
Hawker
,
P. N.
,
Cooper
,
B. J.
,
Douglas
,
J. M. K.
, and
Winterborn
,
D. J. W.
,
1991
, “
Optimization of Substrate/Washcoat Interaction for Improved Catalyst Durability
,” SAE Paper No. 910372.
45.
Koltsakis
,
G. C.
,
Konstantinidis
,
P. A.
, and
Stamatelos
,
A. M.
,
1997
, “
Development and Application Range of Mathematical Models for 3-Way Catalytic Converters
,”
Appl. Catal., B
,
12
(
2-3
), pp.
161
191
.10.1016/S0926-3373(96)00073-2
46.
Shamim
,
T.
,
2003
, “
Effect of Heat and Mass Transfer Coefficients on the Performance of Automotive Catalytic Converters
,”
Int. J. Engine Res.
,
4
(
2
), pp.
129
141
.10.1243/146808703321533277
47.
Shamim
,
T.
,
2005
, “
Dynamic Behaviour of Automotive Catalytic Converters Subjected to Variations in Engine Exhaust Compositions
,”
Int. J. Engine Res.
,
6
(
6
), pp.
557
567
.10.1243/146808705X27705
48.
Benjamin
,
S. F.
, and
Roberts
,
C. A.
,
2004
, “
Automotive Catalyst Warm-Up to Light-Off by Pulsating Engine Exhaust
,”
Int. J. Engine Res.
,
5
(
2
), pp.
125
147
.10.1243/146808704773564541
49.
Benjamin
,
S. F.
, and
Roberts
,
C. A.
,
2004
, “
Catalyst Warm-Up to Light-Off by Pulsating Engine Exhaust: Two-Dimensional Studies
,”
Int. J. Engine Res.
,
5
(
3
), pp.
257
280
.10.1243/1468087041549607
50.
Chilton
,
T. H.
, and
Colburn
,
A. P.
,
1934
, “
Mass Transfer (Absorption) Coefficients Prediction from Data on Great Transfer and Fluid Friction
,”
Ind. Eng. Chem.
,
26
(
11
), pp.
1183
1187
.10.1021/ie50299a012
51.
Grigull
,
V.
, and
Tratz
,
H.
,
1965
, “
Thermischereinlauf in Ausgebildeter Laminarerrohrströmung
,”
Int. J. Heat Mass Transfer
,
8
(
5
), pp.
669
678
.10.1016/0017-9310(65)90016-5
52.
Bhattacharya
,
M.
,
Harold
,
M.
, and
Balakotaiah
,
V.
,
2004
, “
Mass-Transfer Coefficients in Washcoated Monoliths
,”
AIChE J.
,
50
(
11
), pp.
2939
2955
.10.1002/aic.10212
53.
Olsson
,
L.
,
Persson
,
H.
,
Fridell
,
E.
,
Skoglundh
,
M.
, and
Andersson
,
B.
,
2001
, “
A Kinetic Study of NO Oxidation and NOx Storage on Pt/Al2O3 and Pt/BaO/Al2O3
,”
J. Phys. Chem. B
,
105
(
29
), pp.
6895
6906
.10.1021/jp010324p
54.
Arnby
,
K.
,
Törncrona
,
A.
,
Andersson
,
B.
, and
Skoglundh
,
M.
,
2004
, “
Investigation of Pt/Γ-Al2O3 Catalysts With Locally High Pt Concentrations for Oxidation of CO at Low Temperatures
,”
J. Catal.
,
221
(
1
), pp.
252
261
.10.1016/j.jcat.2003.08.017
55.
Depcik
,
C.
,
Loya
,
S.
, and
Srinivasan
,
A.
,
2009
, “
Adaptive Carbon Monoxide Kinetics for Exhaust Aftertreatment Modeling
,”
2009 ASME International Mechanical Engineering Congress & Exposition
, IMECE2009-11173.
56.
Liu
,
B.
,
Hayes
,
R. E.
,
Checkel
,
M. D.
,
Zheng
,
M.
, and
Mirosh
,
E.
,
2001
, “
Reversing Flow Catalytic Converter for a Natural Gas/Diesel Dual Fuel Engine
,”
Chem. Eng. Sci.
,
56
(
8
), pp.
2641
2658
.10.1016/S0009-2509(00)00535-2
You do not currently have access to this content.