A large operational envelope is a key requirement for modern gas turbines. Fuel staging is used here to improve the part load performance of an enhanced FLOX® type combustor. A swirl-stabilized pilot stage is integrated in the FLOX® burner and the results of high pressure lab-scale experiments at system relevant conditions are presented. The operational envelope of the piloted system could be extended by approximately 10%. Pressure scaling and variations of air preheat temperature and jet velocity describe fundamental characteristics of the piloted system. OH* chemiluminescence imaging is used to investigate flame shapes and the effect of the interacting flames. Emissions and pressure pulsations define limits, and optimum operation conditions of the combustor and show the influence of part load relevant parameters.

References

References
1.
Gruschka
,
U.
,
Janus
,
B.
,
Meisl
,
J.
,
Huth
,
M.
, and
Wasif
,
S.
,
2008
, “
ULN System for the New SGT5-8000H Gas Turbine: Design and High Pressure Rig Test Results
,”
ASME
Paper No. GT2008-51208.10.1115/GT2008-51208
2.
Nag
,
P.
,
Little
,
D.
,
Teehan
,
D.
,
Wetzl
,
K.
, and
Elwood
,
D.
,
2008
, “
Low Load Operational Flexibility for Siemens G-Class Gas Turbines
,” Power-Gen International, Orlando, FL, December 2–4.
3.
Herda
,
V.
,
Gallagher
,
W.
, and
McQuiggan
,
G.
,
2010
, “
The Development and Operational Experience With the Latest Siemens SGT6-5000F Gas Turbine at the Great River Energy Elk River Peaking Plant
,”
ASME
Paper No. GT2010-22091.10.1115/GT2010-22091
4.
Philipson
,
S.
,
Flohr
,
P.
, and
Zajadatz
,
M.
,
2008
, “
The GT24/GT26 Reheat Concept: The Proven Pathway to Low Emissions and Flexibility at High Efficiency
,” Power-Gen Europe, Milan, June 3–5.
5.
FLOX® is a registered trademark of WS Wärmeprozesstechnik GmbH
,
Renningen
,
Germany
.
6.
Lückerath
,
R.
,
Meier
,
W.
, and
Aigner
,
M.
,
2007
, “
FLOX® Combustion at High Pressure With Different Fuel Compositions
,”
ASME J. Eng. Gas Turb. Power
,
130
(
1
), p.
011505
.10.1115/1.2749280
7.
Lammel
,
O.
,
Schütz
,
H.
,
Schmitz
,
G.
,
Lückerath
,
R.
,
Stöhr
,
M.
,
Noll
,
B.
,
Aigner
,
M.
,
Hase
,
M.
, and
Krebs
,
W.
,
2010
, “
FLOX® Combustion at High Power Density and High Flame Temperatures
,”
ASME J. Eng. Gas Turb. Power
,
132
(
12
), p.
121503
.10.1115/1.4001825
8.
Fleck
,
J.
,
Griebel
,
P.
,
Steinberg
,
A.
,
Stöhr
,
M.
,
Aigner
,
M.
, and
Ciani
,
A.
,
2010
, “
Experimental Investigation of a Generic, Fuel Flexible Reheat Combustor at Gas Turbine Relevant Operating Conditions
,”
ASME
Paper No. GT2010-22722.10.1115/GT2010-22722
9.
Lückerath
,
R.
,
Lammel
,
O.
,
Stöhr
,
M.
,
Boxx
,
I.
,
Stopper
,
U.
,
Meier
,
W.
,
Janus
,
B.
, and
Wegner
,
B.
,
2011
, “
Experimental Investigations of Flame Stabilization of a Gas Turbine Combustor
,”
ASME
Paper No. GT2011-45790.10.1115/GT2011-45790
10.
Dandy
,
D. S.
, and
Vosen
,
S. R.
,
1992
. “
Numerical and Experimental Studies of Hydroxyl Radical Chemiluminescence in Methane Air Flames
,”
Combust. Sci. Technol.
,
82
, pp.
131
150
.10.1080/00102209208951816
11.
Lee
,
J. G.
, and
Santavicca
,
D. A.
,
2003
, “
Experimental Diagnostics for the Study of Combustion Instabilities in Lean Premixed Combustors
,”
J. Propul. Power
,
19
, pp.
735
750
.10.2514/2.6191
12.
Lourier
,
J.-M.
,
Widenhorn
,
A.
,
Noll
,
B.
,
Stöhr
,
M.
, and
Aigner
,
M.
,
2010
, “
Numerical Analysis of the Acoustic Transfer Behaviour of Pressure Ducts Utilised for Microphone Measurements in Combustion Chambers
,”
ASME
Paper No. GT2010-22805.10.1115/GT2010-22805
13.
Lammel
,
O.
,
Stöhr
,
M.
,
Kutne
,
P.
,
Dem
,
C.
,
Meier
,
W.
, and
Aigner
,
M.
,
2011
, “
Experimental Analysis of Confined Jet Flames by Laser Measurement Techniques
,”
ASME
Paper No. GT2011-45111.10.1115/GT2011-45111
14.
Di Domenico
,
M.
,
Gerlinger
,
P.
, and
Noll
,
B.
,
2011
, “
Numerical Simulations of Confined, Turbulent, Lean, Premixed Flames Using a Detailed Chemistry Combustion Model
,”
ASME
paper No. GT2011-45520.10.1115/GT2011-45520
You do not currently have access to this content.