Fuels from low quality feedstock such as biomass and biomass residues are currently discussed with respect to their potential to contribute to a more sustainable electrical power supply. In the present work, we report on the study of generic representative gas mixtures stemming from the gasification of different feedstock, from wood and algae. Two major combustion properties—burning velocities and ignition delay times—were measured for different parameters: (i) for two pressures—1 bar and 3 bar—at a constant preheat temperature T0 = 373 K, to determine burning velocities by applying the cone angle method; and (ii) for elevated pressures—up to 16 bar—in the temperature range between about 1000 and 2000 K, at fuel-equivalence ratios φ of 0.5 and 1.0, to obtain ignition delay times by applying the shock tube method. Additional studies performed in our group on gas mixtures of natural gas, methane, and hydrogen were also taken into account as major components of biogenic gas mixtures. It was found that the reaction behavior of the wood gasification product (N2, CO, H2, CO2, CH4) is mainly determined by its H2 content, besides CH4; methane determines the kinetic behavior of the algae fermentation product (CH4, CO2, N2) due to its relatively high amount. Detailed chemical kinetic reaction models were used to predict the measured data. The trends and main features were captured by predictions applying different reaction models. The agreement of the experiments and the predictions is dependent on the pressure range.

References

References
1.
International Energy Agency
,
2010
, World Energy Outlook 2010,
OECD Publishing
,
Paris
, available at: http://www.iea.org/publications/freepublications/publication/weo2010-1.pdf10.1787/weo-2010-en
2.
International Energy Agency
,
2011
, “Technology Roadmap-Biofuels for Transport Report,” http://www.iea.org/papers/2011/biofuels_roadmap.pdf
3.
Kick
,
Th.
,
Kathrotia
,
T.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2011
, “
An Experimental and Modeling Study of Laminar Flame Speeds of Alternative Aviation Fuels
,”
Proceedings of the. GT2011
, ASME Turbo Expo, Vancouver, Canada, June 6–10,
ASME
Paper No. GT2011-45606.10.1115/GT2011-45606
4.
Gadde
,
S.
,
Wu
,
J.
,
Gulati
,
A.
,
McQuiggan
,
G. M.
,
Koestlin
,
B.
, and
Prade
,
B.
,
2006
, “
Syngas Capable Combustion Systems Development for Advanced Gas Turbines
,”
Proceedings of the GT2006
, ASME Turbo Expo, Barcelona, Spain, May 8–11,
ASME
Paper No. GT2006-90970.10.1115/GT2006-90970
5.
Lindfeldt
,
E. G.
and
Westermark
,
M. O.
,
2006
, “
An Integrated Gasification Zero Emission Plant Using Oxygen Produced in a Mixed Conducting Membrane Reactor
,”
Proceedings of the GT2006
, ASME Turbo Expo, Barcelona, Spain, May 8–11,
ASME
Paper No. GT2006-90183.10.1115/GT2006-90183
6.
Delattin
,
F.
,
Bram
,
S
, and.
De Ruyck
,
J.
,
2006
, “
Co-Utilization of Biomass and Natural Gas in an Existing Powerplant Through Primary Steam Reforming of Natural Gas
,”
Proceedings of the GT2006
, ASME Turbo Expo, Barcelona, Spain, May 8–11,
ASME
Paper No. GT2006-90012.10.1115/GT2006-90012
7.
Panne
,
T.
,
Widenhorn
,
A.
,
Aigner
,
M.
, and
Masgrau
,
M.
2009
, “
Operation Flexibility and Efficiency Enhancement for a Personal 7kW Gas Turbine System
,”
Proceedings of the GT2009
,
ASME Turbo Expo
, Orlando, FL, June 8–12,
ASME
Paper No. GT2009-59048.10.1115/GT2009-59048
8.
Hohloch
,
M.
,
Widenhorn
,
A.
,
Lebküchner
,
D.
,
Panne
,
T.
, and
Aigner
,
M.
2008
, “
Micro Gas Turbine Test Rig for Hybrid Power Plant Application
,”
Proceedings of the GT2008
,
ASME Turbo Expo
, Berlin, Germany, June 9–13,
ASME
Paper No. GT2008-50443.10.1115/GT2008-50443
9.
DedeBio, Project No. FZK A 283 09, project funded by Stiftung Energieforschung Baden-Württemberg, Germany.
10.
Sterr
,
Y
.,
Schließmann
,
U.
, and
Trösch
,
W.
,
2011
, Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Stuttgart, personal communication.
11.
Braun-Unkhoff
,
M.
,
Kick
,
Th.
,
Frank
,
P.
, and
Aigner
,
M.
,
2007
, “
An Investigation on Laminar Flame Speed as Part of Needed Combustion Characteristics of Biomass-Based Syngas Fuels
,”
Proceedings of the GT2007
, ASME Turbo Expo, Montréal, Canada, May 14–17,
ASME
Paper No. GT2007-27479.10.1115/GT2007-27479
12.
Braun-Unkhoff
,
M.
,
Slavinskaya
,
N. A.
, and
Aigner
,
M.
,
2009
, “
A Detailed and Reduced Reaction Mechanism of Biomass-Based Syngas Fuels
,”
Proceedings of the GT2009
, ASME Turbo Expo, Orlando, FL, June 8–12,
ASME
Paper No. GT2009-60214.10.1115/GT2009-60214
13.
Braun-Unkhoff
,
M.
,
Kick
,
Th.
,
Herzler
,
J.
,
Herbst
,
J.
,
Naumann
,
C.
,
Frank
,
P.
, and
Aigner
M.
,
2007
, “
Measurements of Combustion Relevant Properties of Biogenic Gas Mixtures as Basis for Their Use in Modern Gas Turbines
,”
15th European Biomass Conference and Exhibition
, Berlin, Germany, May 7–11, pp. 958–961.
14.
Herzler
,
J.
, and
Naumann
,
C.
,
2009
, “
Shock-Tube Study of the Ignition of Methane/Ethane/ Hydrogen Mixtures With Hydrogen Contents From 0 to 100% at Different Pressures
,”
Proc. Combust. Inst.
,
32
, pp.
213
220
.10.1016/j.proci.2008.07.034
15.
Herzler
,
J.
, and
Naumann
,
C.
,
2008
, “
Shock Tube Study of the Ignition of Lean CO/H2 Fuel Blends at Intermediate Temperatures and High Pressure
,”
Combust. Sci. Technol.
,
180
(
10
), pp.
2015
2028
.10.1080/00102200802269715
16.
Braun-Unkhoff, M., and Naumann, C.
, 2005, “Reliability of Practical Combustion Systems: Influence of Gas Quality and Gas Conditioning on Flashback and Autoignition,” Final Report Between Alsom, DLR, and En-BW, DLR Stuttgart, Germany.
17.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
J.
, and
Qin
,
Z.
,
1999
, GRI 3.0 Mechanism, Version 3.0, see http://www.me.berkeley.edu/gri_mech
18.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
,
Chaos
,
M.
,
Dryer
,
F. L.
, and
Scire
,
J. J.
, Jr
.,
2007
, “
A Comprehensive Kinetic Mechanism for CO, CH2O, and CH3OH Combustion
,”
Int. J. Chem. Kinet.
,
39
, pp.
109
136
, http://www.princeton.edu/mae/people/faculty/dryer/homepage/kinetic_models/c1-model/10.1002/kin.20218
19.
BIOSTROM
, 2005–2008, “Gas Production From Gasification of Biomass For Power Generation,” Project No. A205/04, funded by Stiftung Energieforschung, Baden-Württemberg, Germany.
20.
Herzler
,
J.
and
Naumann
,
C.
,
2007
, “Project BIOSTOM: Gas Production From Gasification of Biomass for Power Generation,” DLR, Stuttgart, Germany.
21.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
,
1992
, “
PREMIX: One-Dimensional Premixed Laminar Flame Code, CHEMKIN-II Version 2.5b
,”
Sandia National Laboratories
,
Livermore, CA
.
22.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
, 1989, “
Chemkin-II: a FORTRAN Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND89-8009.
23.
Eberius
,
H.
and
Kick
,
Th.
1992
, “
Stabilization of Premixed, Conical Methane Flames at High Pressure
,”
Ber. Bunsenges. Phys. Chem.
,
96
, pp.
1416
1425
.10.1002/bbpc.19920961013
24.
Slavinskaya
,
N.
,
Braun-Unkhoff
,
M.
, and
Frank
,
P.
,
2005
, “
Reduced Reaction Mechanisms for Methane and Syngas Combustion in Gas Turbines
,”
Proceedings of the GT2005 ASME Turbo Expo
, Reno, NV, June 6–9,
ASME
Paper No. GT2005-68287.10.1115/GT2005-68287
25.
Vagelopoulos
,
C. M.
and
Egolfopoulos
,
F. N.
,
1994
, “
Laminar Flame Speeds and Extinction Strain Rates of Mixture of Carbon Monoxide With Hydrogen, Methane and Air
,”
Proc. Combust. Inst.
,
25
, pp.
1317
1323
.10.1016/S0082-0784(06)80773-3
26.
McLean
,
I. C.
,
Smith
,
D. B.
, and
Taylor
S. C.
,
1994
, “
The Use of Carbon Monoxide/ Hydrogen Burning Velocities to Examine the Rate of the CO + OH Reaction
,”
Proc. Combust. Inst.
,
25
, pp.
749
757
.10.1016/S0082-0784(06)80707-1
27.
Andrews
,
G. E.
, and
Bradley
,
D.
,
1972
, “
Determination of Burning Velocities: A Critical Review
,”
Combust. Flame
,
18
, pp.
133
153
.10.1016/S0010-2180(72)80234-7
28.
Law
,
C. K.
,
1988
, “
Dynamics of Stretched Flames
,”
Proc. Combust. Inst.
,
22
, pp.
1381
1402
.
29.
Rallis
,
C. J.
, and
Garforth
,
A. M.
,
1980
, “
The Determination of Laminar Burning Velocity
,”
Prog. Energy Combust. Sci.
,
6
, pp.
303
329
.10.1016/0360-1285(80)90008-8
30.
Wu
,
C.
, and
Law
,
C. K.
,
1984
, “
On the Determination of Laminar Flame Speeds From Stretched Flames
,”
Proc. Combust. Inst.
,
24
, pp.
1941
1949
.
31.
Yamaoka
,
I.
and
Tsuji
,
H.
,
1984
, “
Determination of Burning Velocity Using Counterflow Flames
,”
Proc. Combust. Inst.
,
20
, pp.
1883
1892
.
32.
Markstein
,
G. H.
,
1964
,
Non-Steady Flame Propagation
,
Pergamon
,
New York
, p.
22
.
33.
Rozenchan
,
G.
,
Zhu
,
D. L.
,
Law
,
C. K.
, and
Tse
,
S. D.
,
2002
, “
Outward Propagation, Burning Velocities, and Chemical Effects of Methane Flames Up to 60 atm
,”
Proc. Combust. Inst.
,
29
, pp.
1461
1469
.10.1016/S1540-7489(02)80179-1
34.
Petersen
,
E. L.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
1999
, “
Kinetics Modeling of Shock-Induced Ignition in Low-Dilution CH4/O2 Mixtures at High Pressures and Intermediate Temperatures
,”
Combust. Flame
,
117
, pp.
272
290
.10.1016/S0010-2180(98)00111-4
35.
Smith
,
G. P.
,
Luque
,
J.
,
Chung
,
P.
,
Jeffries
,
J. B.
, and
Crosley
,
D. R.
,
2002
, “
Low Pressure Flame Determinations of Rate Constants for OH(A) and CH(A) Chemiluminescence
,”
Combust. Flame
,
131
, pp.
59
69
.10.1016/S0010-2180(02)00399-1
36.
Keromnes
,
A.
,
Donohoe
,
N.
,
Curran
,
H.
,
Herzler
,
J.
,
Naumann
,
C.
, and
Griebel
,
P.
,
2010
, “
Ignition Delay Time Measurements and Validation of Reaction Mechanism for Hydrogen at Gas Turbine Relevant Conditions
,”
5th International Gas Turbine Conference
,
Brussels
, Belgium, October 27–28.
You do not currently have access to this content.