A numerical model for 3D thermohydrodynamic analysis of bump-type foil bearings with a sparse mesh across the air film is described. The model accounts for heat convection into cooling air, thermal expansion of the bearing components, and material property variations due to temperature rise. Deflection of the compliant foil strip, described as a link-spring structure, is coupled to the solution of the generalized Reynolds equation and the energy equation to account for the effect of foil deformation on the film thickness. The variation in bump stiffness with the thermal growth of bumps is also considered in the model. The unique airflow in foil bearings created by the top foil detachment in the subambient region is analyzed for use in modifying the thermal boundary condition. The Lobatto point quadrature algorithm is used to represent the model on a sparse mesh and thereby reduce the computational effort. The calculated bearing temperatures are in remarkable agreement with both the published test data with the use of cooling air and that without the use of cooling air. The change of bearing radial clearance due to thermal growth of the bearing components was found to significantly affect the bearing load and to be a likely cause of the obvious drop in load capacity with a rise in ambient temperature.

References

References
1.
Walton
J. F.
, II
, and
Heshmat
,
H.
,
2002
, “
Application of Foil Bearing to Turbomachinery Including Vertical Operation
,”
ASME J. Eng. Gas Turbines Power
,
124
, pp.
1032
1041
.10.1115/1.1392986
2.
Agrawal
,
G. L.
,
1997
, “
Foil Air/Gas Bearing Technology—An Overview
,” ASME Paper No. 97-GT-347.
3.
O'Connor
,
L.
,
1993
, “
Fluid-Film Foil Bearings Control Engine Heat
,”
Mech. Eng.
,
115
, pp.
72
75
.
4.
Hovard
,
S. A.
,
1999
, “
Preliminary Development of Characterization Methods for Compliant Air Bearings
,”
STLE Tribol. Trans.
,
42
(
4
), pp.
789
794
.10.1080/10402009908982284
5.
Mohawk Innovative Technology, Inc.
,
2004
, “
Foil Bearings and Compliant Seals Applications
,” http://www.miti.cc/applications.html
6.
Salehi
,
M.
,
Heshmat
,
H.
,
Walton
,
J. F.
, and
Tomaszewski
,
M.
,
2007
, “
Operation of a Mesoscopic Gas Turbine Simulator at Speeds in Excess of 70,000 rpm on Foil Bearings
,”
ASME J. Eng. Gas Turbines Power
,
129
, pp.
170
176
.10.1115/1.2360600
7.
Dykas
,
B.
, and
Howard
,
S. A.
,
2004
, “
Journal Design Consideration for Turbomachine Shafts Supported on Foil Air Bearings
,”
STLE Tribol. Trans.
,
47
, pp.
508
516
.10.1080/05698190490493391
8.
Salehi
,
M.
, and
Heshmat
,
H.
,
2000
, “
On the Fluid Flow and Thermal Analysis of a Compliant Surface Foil Bearing and Seal
,”
STLE Tribol. Trans.
,
43
(
2
), pp.
318
324
.10.1080/10402000008982346
9.
Salehi
,
M.
,
Swanson
,
E.
, and
Heshmat
,
H.
,
2001
, “
Thermal Features of Compliant Foil Bearings—Theory and Experiments
,”
ASME J. Tribol.
,
123
(
3
), pp.
566
571
.10.1115/1.1308038
10.
Peng
,
Z. C.
, and
Khonsari
M. M.
,
2006
, “
A Thermohydrodynamic Analysis of Foil Journal Bearings
,”
ASME J. Tribol.
,
128
, pp.
534
541
.10.1115/1.2197526
11.
Feng
,
K.
, and
Kaneko
,
S.
,
2009
, “
Thermohydrodynamic Study of Multiwound Foil Bearing Using Lobatto Point Quadrature
,”
ASME J. Tribol.
,
131
, p.
021702
.10.1115/1.3070579
12.
Heshmat
,
H.
,
Walowit
,
J. A.
, and
Pinkus
,
O.
,
1983
, “
Analysis of Gas Lubricated Foil Journal Bearings
,”
ASME J. Lubr. Tech.
,
105
, pp.
647
655
.10.1115/1.3254697
13.
Radil
,
K.
, and
Zeszotek
,
M.
,
2004
, “
An Experimental Investigation Into the Temperature Profile of a Compliant Foil Air Bearing
,”
STLE Tribol. Trans.
,
47
(
4
), pp.
470
479
.10.1080/05698190490501995
14.
Sim
,
K.
, and
Kim
,
D.
,
2008
, “
Thermohydrodynamic Analysis of Compliant Flexure Pivot Tilting Pad Gas Bearings
,”
ASME J. Eng. Gas Turbines Power
,
130
, p.
032502
.10.1115/1.2836616
15.
San Andres
,
L.
, and
Kim
,
T. H.
,
2010
, “
Thermohydrodynamic Analysis of Bump Type Gas Foil Bearings: A Model Anchored to Test Data
,”
ASME J. Eng. Gas Turbines Power
,
132(4)
, p.
042504
.10.1115/1.3159386
16.
Iordanoff
,
I.
,
1999
, “
Analysis of an Aerodynamic Compliant Foil Thrust Bearing: Method for a Rapid Design
,”
ASME J. Tribol.
,
121
, pp.
816
822
.10.1115/1.2834140
17.
Lee
,
D.
, and
Kim
,
D.
,
2010
, “
Thermohydrodynmic Analyses of Bump Air Foil Bearings With Detailed Thermal Model of Foil Structures and Rotor
,”
ASME J. Tribol.
,
132
, p.
021704
.10.1115/1.4001014
18.
Kim
,
D.
, and
Park
,
S.
,
2009
, “
Hydrostatic Air Foil Bearings: Analytical and Experimental Investigations.
Tribol. Int.
,
42
(
3
), pp.
413
425
.10.1016/j.triboint.2008.08.001
19.
Lee
,
D.
,
Kim
,
D.
, and
Sadashiva
,
R. P.
,
2011
, “
Transient Thermal Behavior of Preloaded Three-Pad Foil Bearings: Modeling and Experiments
.”
ASME J. Tribol.
,
133
, p.
021703
.10.1115/1.4003561
20.
Kim
,
D.
,
Ki
,
J.
,
Kim
,
Y.
, and
Ahn
,
K.
,
2012
, “
Extended Three-Dimensional Thermo-Hydrodynamic Model of Radial Foil Bearing: Case Studies on Thermal Behaviors and Dynamic Characteristics in Gas Turbine Simulator
,”
ASME J. Eng. Gas Turbines Power
,
134
, p.
052501
.10.1115/1.4005215
21.
Ruscitto
,
D.
,
Mc Cormick
,
J.
, and
Gray
,
S.
,
1978
, “
Hydrodynamic Air Lubricated Compliant Surface Bearing for an Automotive Gas Turbine Engine I-Journal Bearing Performance
,” NASA CR-135368.
22.
Kim
,
T. H.
,
Breedlove
,
A. W.
, and
San Andres
,
L.
,
2008
, “
Characterization of Foil Bearing Structure for Increasing Shaft Temperatures: Part I—Static Load Performance
,”
ASME
Paper No. GT2008-50567.10.1115/GT2008-50567
23.
Kim
,
T. H.
,
Breedlove
,
A. W.
, and
San Andres
,
L.
,
2008
, “
Characterization of Foil Bearing Structure for Increasing Shaft Temperatures: Part II—Dynamic Force Performance
,”
ASME
Paper No. GT2008-50570.10.1115/GT2008-50570
24.
Feng
,
K.
, and
Kaneko
,
S.
,
2010
, “
Analytical Model of Bump-Type Foil Bearings Using A Link-Spring Structure and A Finite Element Shell Model
,”
ASME J. Tribol.
,
132
, p.
021706
.10.1115/1.4001169
25.
Nittono
,
O.
,
2002
, “
Materials Science and Engineering An Introduction
,”
Baifukan Co., LTD
,
Tokyo
, pp.
116
117
(in Japanese).
26.
Moraru
,
L.
, and
Keith
,
T. G.
,
2007
, “
Lobatto Point Quadrature for Thermal Lubrication Problems Involving Compressible Lubricants. EHL Applications
.”
ASME J. Tribol.
,
129
(
1
), pp.
194
198
.10.1115/1.2404965
27.
Khonsari
,
M. M.
,
Jang
,
J. Y.
, and
Fillon
,
M.
,
1996
, “
On the Generalization of Thermohydrodynamic Analyses for Journal Bearings
,”
ASME J. Tribol.
,
118
, pp.
571
579
.10.1115/1.2831576
28.
Holman
,
J. P.
,
2010
,
Heat Transfer
,
10th ed.
,
McGraw Hill
,
New York
, pp.
231
240
, 340–344.
29.
LMNO Engineering, Research, and Software, Ltd.
,
2003
, “
Gas Viscosity Calculator
,” http://www.lmnoeng.com/Flow/GasViscosity.com
30.
Engineering Toolbox
,
2009
, “
The Engineering Toolbox
,” http://www.EngineeringToolBox.com
31.
Dellacorte
,
C.
, and
Valco
,
M. J.
,
2000
, “
Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications
,”
Tribol. Trans.
,
43
(
4
), pp.
795
801
.10.1080/10402000008982410
32.
Dellacorte
,
C.
,
1998
, “
A New Foil Air Bearing Test Rig for Use to 700 °C and 70,000 rpm
,”
STLE Tribol. Trans.
,
41
(
3
), pp.
335
340
.10.1080/10402009808983756
33.
Howard
,
S. A.
,
DellaCrote
,
C.
,
Valco
,
M. J.
,
Prahl
,
J. M.
, and
Heshmat
,
H.
,
2001
, “
Dynamic Stiffness and Damping Characteristics of a High Temperature Air Foil Journal Bearing
,”
STLE Tribol. Trans.
,
44
(
4
), pp.
657
663
.10.1080/10402000108982507
34.
Radil
,
K.
,
Howard
,
S.
, and
Dykas
,
B.
,
2002
, “
The Role of Radial Clearance on the Performance of Foil Air Bearing
,” NASA Report No. NASA-2002-211705.
35.
Seghir-Ouali
,
S.
,
Saury
,
D.
,
Harmand
,
S.
,
Phillipart
,
O.
, and
Laloy
,
D.
,
2006
, “
Convective Heat Transfer Inside a Rotating Cylinder With an Axial Air Flow
,”
Int. J. Therm. Sci.
,
45
, pp.
1166
1178
.10.1016/j.ijthermalsci.2006.01.017
You do not currently have access to this content.