The work presented in this paper intends to deepen our understanding of the mechanisms involved in the spark ignition of liquid fuel sprays. An experimental study is presented regarding the ignition of monodisperse droplet chains of Jet A-1 aviation kerosene in a generic model combustor under well-defined boundary conditions. Breakdowns created by focused laser radiation were used as ignition sparks. They featured rapid spatial expansion, resulting in the formation of spherical blast waves in the surrounding air. The focus of this study lay on the effect of the blast waves on the fuel droplets. Blast wave trajectories were investigated by Schlieren imaging. Their interaction with kerosene droplets was observed with a high speed camera via a long distance microscope; the droplets were visualized by laser-induced Mie scattering. Droplets within a distance of 10 mm from the breakdown position were deformed and disintegrated by the aerodynamic forces of the postshock flow field. Different breakup modes were observed, depending on the distance from the breakdown position: Catastrophic breakup was observed at a 5 mm distance, resonant breakup was observed at a 10 mm distance. Breakup by blast waves from ignition sparks is expected to be a crucial mechanism for spray ignition because it supports evaporation. Weber number calculations revealed that the breakup modes observed under lab conditions will also appear in aviation gas turbines at high altitude relight conditions.

References

References
1.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion
,
3rd ed.
,
Taylor & Francis
,
London
.
2.
Boyde
,
J.
,
Le Clercq
,
P.
,
Di Domenico
,
M.
,
Mosbach
,
T.
,
Gebel
,
G. C.
,
Rachner
,
M.
, and
Aigner
,
M.
,
2011
, “
Ignition and Flame Propagation Along Planar Monodisperse Droplet Streams
,” AIAA Paper No. 2011-102.
3.
Boyde
,
J.
,
Le Clercq
,
P.
,
Di Domenico
,
M.
,
Gebel
,
G. C.
,
Mosbach
,
T.
, and
Aigner
,
M.
,
2011
, “
Validation of an Ignition and Flame Propagation Model for Multiphase Flows
,”
ASME
Paper No. GT2011-45104.10.1115/GT2011-45104
4.
Neophytou
,
A.
,
2010
, “
Spark Ignition and Flame Propagation in Sprays
,” Ph.D. thesis,
University of Cambridge
,
Cambridge, UK
.
5.
Schroll
,
P.
,
2009
, “
Conditional Moment Closure for Spray Combustion and Ignition
,” Ph.D. thesis,
University of Cambridge
,
Cambridge, UK
.
6.
Boileau
,
M.
,
Staffelbach
,
G.
,
Cuenot
,
B.
,
Poinsot
,
T.
, and
Bérat
,
C.
,
2008
, “
LES of an Ignition Sequence in a Gas Turbine Engine
,”
Combust. Flame
,
154
, pp.
2
22
.10.1016/j.combustflame.2008.02.006
7.
Reveillon
,
J.
, and
Demoulin
,
F. X.
,
2007
, “
Evaporating Droplets in Turbulent Reacting Flows
,”
Proc. Combust. Inst.
,
31
, pp.
2319
2326
.10.1016/j.proci.2006.07.114
8.
Marchione
,
T.
,
Ahmed
,
S. F.
, and
Mastorakos
,
E.
,
2009
, “
Ignition of Turbulent Swirling n-Heptane Spray Flames Using Single and Multiple Sparks
,”
Combust. Flame
,
156
, pp.
166
180
.10.1016/j.combustflame.2008.10.003
9.
Wandel
,
A. P.
,
Chakraborty
,
N.
, and
Mastorakos
,
E.
,
2009
, “
Direct Numerical Simulations of Turbulent Flame Expansion in Fine Sprays
,”
Proc. Combust. Inst.
,
32
, pp.
2283
2290
.10.1016/j.proci.2008.06.102
10.
Ouarti
,
N.
,
Lavergne
,
G.
, and
Lecourt
,
R.
,
2004
, “
Modelling of the Ignition Inside a Turbojet Combustor. Application to In-Flight Relight
,”
Proceedings of the ILASS-Europe 2004
, Nottingham, UK, September 6–8.
11.
Linassier
,
G.
,
Lecourt
,
R.
,
Villedieu
,
P.
,
Lavergne
,
G.
, and
Verdier
,
H.
,
2010
, “
Numerical and Experimental Study of Aircraft Engine Ignition
,”
Proceedings of the ILASS-Europe 2010
, Brno, Czech Republic, September 6–8.
12.
Mosbach
,
T.
,
Gebel
,
G. C.
, and
Meier
,
W.
,
2010
, “
Report on the Experiments at the Lab-Scale Combustor
,” Deliverable D2.2.3b, EU Project No. AST5-CT-2006-030828.
13.
Mosbach
,
T.
,
Gebel
,
G. C.
, and
Meier
,
W.
,
2011
, “
AP 1.1 Experimentelle Untersuchungen und Validierungsmessungen
,” BMWi Project No. 20T0602.
14.
Aggarwal
,
S. K.
,
1998
, “
A Review of Spray Ignition Phenomena: Present Status and Future Research
,”
Prog. Energy Combust. Sci.
,
24
, pp.
565
600
.10.1016/S0360-1285(98)00016-1
15.
Lawes
,
M.
,
Lee
,
Y.
,
Mokhtar
,
A. S.
, and
Woolley
,
R.
,
2008
, “
Laser Ignition of Iso-Octane Air Aerosols
,”
Combust. Sci. Technol.
,
180
, pp.
296
313
.10.1080/00102200701739198
16.
Letty
,
C.
, and
Mastorakos
,
E.
,
2011
, “
Laser-Induced Ignition of Swirling n-Heptane Spray Flames
,”
Proceedings of the 5th European Combustion Meeting 2011
, Cardiff, UK, June 28-July 1.
17.
Mosbach
,
T.
,
Sadanandan
,
R.
,
Meier
,
W.
, and
Eggels
,
R.
,
2010
, “
Experimental Analysis of Altitude Relight Under Realistic Conditions Using Laser and High-Speed Video Techniques
,”
ASME
Paper No. GT2010-22625.10.1115/GT2010-22625
18.
Mosbach
,
T.
,
Gebel
,
G. C.
,
Le Clercq
,
P.
,
Sadr
,
R.
,
Kannaiyan
,
K.
, and
Al-Sharshani
,
A.
,
2011
, “
Investigation of GTL-Like Jet Fuel Composition on GT Engine Altitude Ignition and Combustion Performance: Part II—Detailed Diagnostics
,”
ASME
Paper No. GT2011-45510.10.1115/GT2011-45510
19.
Read
,
R.
,
2008
, “
Experimental Investigations Into High-Altitude Relight of a Gas Turbine
,” Ph.D. thesis,
University of Cambridge
,
Cambridge, UK
.
20.
Gebel
,
G. C.
,
Mosbach
,
T.
,
Meier
,
W.
, and
Aigner
,
M.
,
2011
, “
Laser-Induced Ignition of Kerosene in a Model Combustor
,”
Proceedings of the 5th European Combustion Meeting 2011
, Cardiff, UK, June 28-July 1.
21.
Wang
,
B.
,
Komurasaki
,
K.
,
Yamaguchi
,
T.
,
Shimamura
,
K.
, and
Arakawa
,
Y.
,
2010
, “
Energy Conversion in a Glas-Laser-Induced Blast Wave in Air
,”
J. Appl. Phys.
,
108
,
124911
.10.1063/1.3525561
22.
Jiang
,
Z.
,
Takayama
,
K.
,
Moosad
,
K. P. B.
,
Onodera
,
O.
, and
Sun
,
M.
,
1998
, “
Numerical and Experimental Study of a Micro-Blast Wave Generated by Pulsed-Laser Beam Focusing
,”
Shock Waves
,
8
, pp.
337
349
.10.1007/s001930050126
23.
Bradley
,
D.
,
Sheppard
,
C. G. W.
,
Suardjaja
,
I. M.
, and
Woolley
,
R.
,
2004
, “
Fundamentals of High-Energy Spark Ignition With Lasers
,”
Combust. Flame
,
138
, pp.
55
77
.10.1016/j.combustflame.2004.04.002
24.
Lackner
,
M.
,
Charareh
,
S.
,
Winter
,
F.
,
Iskra
,
K. F.
,
Rüdisser
,
D.
,
Neger
,
T.
,
Kopecek
,
H.
,
Wintner
,
E.
,
2004
, “
Investigation of the Early Stages in Laser-Induced Ignition by Schlieren Photography and Laser-Induced Fluorescence Spectroscopy
,”
Opt. Express
,
12
, pp.
4546
4557
.10.1364/OPEX.12.004546
25.
Freeman
,
R. A.
, and
Craggs
,
J. D.
,
1968
, “
Shock Waves From Spark Discharges
,”
J. Phys. D: Appl. Phys.
,
2
, pp.
421
427
.10.1088/0022-3727/2/3/315
26.
Olsen
,
H. L.
,
Edmonson
,
R. B.
, and
Gayhart
,
E. L.
,
1952
, “
Microchronometric Schlieren Study of Gaseous Expansion From an Electric Spark
,”
J. Appl. Phys.
,
23
, pp.
1157
1162
.10.1063/1.1702001
27.
Holst-Jensen
,
O.
,
1981
, “
An Experimental Investigation of Rise Times of Very Weak Shock Waves
,” UTIAS Technical Note No. 229.
28.
Akindele
,
O. O.
,
Bradley
,
D.
,
Mak
,
P. W.
, and
McMahon
,
M.
,
1982
, “
Spark Ignition of Turbulent Gases
,”
Combust. Flame
,
47
, pp.
129
155
.10.1016/0010-2180(82)90097-9
29.
Maly
,
R.
,
1984
, “
Spark Ignition: Its Physics and Effect on the Internal Combustion Engine
,”
Fuel Economy in Road Vehicles Powered by Spark Ignition Engines
,
J. C.
Hillard
and
G. S.
Springer
, eds.,
Plenum Press
,
New York
.
30.
Dale
,
J. D.
,
Checkel
,
M. D.
, and
Smy
,
P. R.
,
1997
, “
Application of High Energy Ignition Systems to Engines
,”
Prog. Energy Combust. Sci.
,
23
, pp.
379
398
.10.1016/S0360-1285(97)00011-7
31.
Brode
,
H. L.
,
1955
, “
Numerical Solutions of Spherical Blast Waves
,”
J. Appl. Phys.
,
26
, pp.
766
775
.10.1063/1.1722085
32.
Brode
,
H. L.
,
1956
, “
Point Source Explosion in Air
,” The RAND Corporation, Report No. RM-1824-AEC,.
33.
Ranger
,
A. A.
, and
Nicholls
,
J. A.
,
1972
, “
Atomization of Liquid Droplets in a Convective Gas Stream,
Int. J. Heat Mass Transfer
,
15
, pp.
1203
1211
.10.1016/0017-9310(72)90185-8
34.
Pilch
,
M.
, and
Erdman
,
C. A.
,
1987
, “
Use of Breakup Time Data and Velocity History Data to Predict the Maximum Size of Stable Fragments for Acceleration-Induced Breakup of a Liquid Drop
,”
Int. J. Multiphase Flows
,
13
, pp.
741
757
.10.1016/0301-9322(87)90063-2
35.
Theofanous
,
T. G.
,
Li
,
G. J.
, and
Dinh
,
T. N.
,
2004
, “
Aerobreakup in Rarefied Supersonic Gas Flows
,”
ASME J. Fluids Eng
.,
126
(4)
, pp.
516
527
.
36.
Hsiang
,
L.-P.
, and
Faeth
,
G. M.
,
1995
, “
Drop Deformation and Breakup Due to Shock Wave and Steady Disturbances
,”
Int. J. Multiphase Flows
,
21
, pp.
545
560
.10.1016/0301-9322(94)00095-2
37.
Klenk
,
W.
,
Widdecke
,
N.
, and
Frohn
,
A.
,
1996
, “
Disintegration of Monodisperse Droplet Streams by Shock Waves
,”
Proceedings of the 4th Asian Symposium on Visualization
, Beijing, pp.
229
234
.
38.
Ronney
,
P. D.
,
1994
, “
Laser Versus Conventional Ignition of Flames
,”
Opt. Eng.
,
33
, pp.
510
521
.10.1117/12.152237
39.
Lamb
,
H.
,
1932
,
Hydrodynamics
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.