Applications of natural gas and hydrogen co-firing have received increased attention in the gas turbine market, which aims at higher flexibility due to concerns over the availability of fuels. While much work has been done in the development of a fuels database and corresponding chemical kinetics mechanism for natural gas mixtures, there are nonetheless few if any data for mixtures with high levels of hydrogen at conditions of interest to gas turbines. The focus of the present paper is on gas turbine engines with primary and secondary reaction zones as represented in the Alstom and Rolls Royce product portfolio. The present effort includes a parametric study, a gas turbine model study, and turbulent flame speed predictions. Using a highly optimized chemical kinetics mechanism, ignition delay times and laminar burning velocities were calculated for fuels from pure methane to pure hydrogen and with natural gas/hydrogen mixtures. A wide range of engine-relevant conditions were studied: pressures from 1 to 30 atm, flame temperatures from 1600 to 2200 K, primary combustor inlet temperature from 300 to 900 K, and secondary combustor inlet temperatures from 900 to 1400 K. Hydrogen addition was found to increase the reactivity of hydrocarbon fuels at all conditions by increasing the laminar flame speed and decreasing the ignition delay time. Predictions of turbulent flame speeds from the laminar flame speeds show that hydrogen addition affects the reactivity more when turbulence is considered. This combined effort of industrial and university partners brings together the know-how of applied as well as experimental and theoretical disciplines.

References

1.
Fleck
,
J.
,
Griebel.
P.
,
Steinberg
,
A.
,
Stöhr
,
M.
,
Aigner
,
M.
, and
Ciani
,
A.
,
2011
, “
Autoignition Limits of Hydrogen at Relevant Reheat Combustor Operating Conditions
,”
ASME
Paper GT2011-46195.10.1115/GT2011-46195
2.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2008
, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME J. Eng. Gas Turbines Power
,
130
(1), p.
011506
.10.1115/1.2771243
3.
Güthe
,
F.
,
Hellat
,
F.
, and
Flohr
,
P.
,
2009
, “
The Reheat Concept: The Proven Pathway to Ultralow Emissions and High Efficiency and Flexibility
,”
ASME J. Eng. Gas Turbines Power
,
131
, p.
021503
.10.1115/1.2836613
4.
Agrawal
,
D. D.
,
1981
, “
Experimental Determination of Burning Velocity of Methane-Air Mixtures in a Constant Volume Vessel
,”
Combust. Flame
,
42
, pp.
243
252
.10.1016/0010-2180(81)90160-7
5.
Huang
,
J.
,
Hill
,
P.
,
Bushe
,
W.
, and
Munshi
,
S.
,
2004
, “
Shock-Tube Study of Methane Ignition Under Engine Relevant Conditions: Experiments and Modeling
,”
Combust. Flame
,
136
, pp.
25
42
.10.1016/j.combustflame.2003.09.002
6.
Bourque
,
G.
,
Healy
,
D.
,
Curran
,
H.
,
Simmie
,
J.
,
de Vries
,
J.
,
Antonovski
,
V.
,
Corbin
,
B.
,
Zinner
,
C.
, and
Petersen
,
E.
,
2007
, “
Effect of Higher-Order Hydrocarbons on Methane-Based Fuel Chemistry at Gas Turbine Pressures
,”
ASME
Paper No. GT2007-28039.10.1115/GT2007-28039
7.
Bourque
,
G.
,
Healy
,
D.
,
Curran
,
H.
,
Zinner
,
C.
,
Kalitan
,
D.
,
de Vries
,
J.
,
Aul
,
C.
, and
Petersen
,
E.
,
2010
, “
Ignition and Flame Speed Kinetics of Two Natural Gas Blends With High Levels of Heavier Hydrocarbons
,”
ASME J. Eng. Gas Turbines Power
,
132
(
2
), p.
021504
.10.1115/1.3124665
8.
Sims
,
G.
,
Clague
,
A.
,
Copplestone
,
R.
,
Menzies
,
K.
, and
MacQuisten
,
M.
,
2005
, “
The Measurement and Prediction of Gaseous Hydrocarbon Fuel Auto-Ignition Delay Time at Realistic Gas Turbine Operating Conditions
,”
ASME
Paper No. GT2005-68736.10.1115/GT2005-68736
9.
Spadaccini
,
L.
, and
Colket
III,
M.
,
1994
, “
Ignition Delay Characteristics of Methane Fuels
,”
Progress in Energy and Combustion Science
,
20
, pp.
431
460
.10.1016/0360-1285(94)90011-6
10.
Verhelst
,
S.
,
Woolley
,
R.
,
Lawes
,
M.
, and
Sierens
,
R.
,
2005
, “
Laminar and Unstable Burning Velocities and Markstein Lengths of Hydrogen-Air Mixtures at Engine-Like Conditions
,”
Proc. Combust. Inst.
,
30
, pp.
209
216
.10.1016/j.proci.2004.07.042
11.
Herzler
,
J.
, and
Naumann
,
C.
,
2009
, “
Shock-Tube Study of the Ignition of Methane/Ethane/Hydrogen Mixtures With Hydrogen Contents from 0% to 100% at Different Pressures
,”
Proc. Combust. Inst.
,
32
, pp.
213
220
.10.1016/j.proci.2008.07.034
12.
Halter
,
F.
,
Chauveau
,
C.
,
Djebaili-Chaumeix
,
N.
, and
Gökalp
,
I.
,
2005
, “
Characterization of the Effects of Pressure and Hydrogen Concentration on Laminar Burning Velocities of Methane-Hydrogen-Air Mixtures
,”
Proc. Combust. Inst.
,
30
, pp.
201
208
.10.1016/j.proci.2004.08.195
13.
Yu
,
G.
,
Law
,
C. K.
, and
Wu
,
C. K.
,
1986
, “
Laminar Flame Speeds of Hydrocarbon + Air Mixtures With Hydrogen Addition
,”
Combust. Flame
63
, pp.
339
347
.10.1016/0010-2180(86)90003-9
14.
Huang
,
Z.
,
Zhang
,
Y.
,
Zeng
,
K.
,
Liu
,
B.
,
Wang
,
Q.
, and
Jiang
,
D.
,
2006
, “
Measurements of Laminar Buring Velocities for Natural Gas-Hydrogen-Air Mixtures
,”
Combust. Flame
,
146
, pp.
302
311
.10.1016/j.combustflame.2006.03.003
15.
Di Sarli
,
V.
, and
Di Benedetto
,
A.
,
2007
, “
Laminar Burning Velocity of Hydrogen-Methane/Air Premixed Flames
,”
Int. J. Hydrogen Energy
,
32
, pp.
637
646
.10.1016/j.ijhydene.2006.05.016
17.
Ó Conaire
,
M.
,
Curran
,
H. J.
,
Simmie
,
J. M.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2004
, “
A Comprehensive Modeling Study of Hydrogen Oxidation
,”
Int. J. Chem. Kinet
,
36
, pp.
603
622
.10.1002/kin.20036
18.
Kéromnès
,
A.
,
Metcalfe
,
W. K.
,
Donohoe
,
N.
,
Curran
,
H. J.
, and
Pitz
,
W. J.
,
2011
, “
Detailed Chemical Kinetic Model for H2 and H2/CO (Syngas) Mixtures at Elevated Pressure
,”
7th US Nat. Meeting of the Comb. Inst
,
Atlanta
, GA, March 20–23, Paper No. 21-23/2003/2011.
19.
Kéromnès
A.
,
Metcalfe
,
W. K.
,
Heufer
,
K. A.
,
Donohoe
,
N.
,
Das
,
A. K.
,
Sung
,
C. J.
,
Herzler
,
J.
,
Naumann
,
K.
,
Griebel
,
P.
,
Mathieu
,
O.
,
Krejci
,
M. J.
,
Petersen
,
E. L.
,
Pitz
,
W. J.
, and
Curran
,
H. J.
,
2012
, “
An Experimental and Detailed Chemical Kinetic Modelling Study of Hydrogen and Syngas Mixtures at Elevated Pressures
,”
Combust. Flame
(in press).
20.
Lowry
,
W.
,
de Vries
,
J.
,
Krejci
,
M.
,
Petersen
,
E.
,
Serinyel
,
Z.
,
Metcalfe
,
W.
,
Curran
,
H.
,
Bourque
,
G.
,
2011
, “
Laminar Flame Speed Measurements and Modeling of Pure Alkanes and Alkane Blends at Elevated Pressures
,”
ASME J. Eng. Gas Turbines Power
,
133
(
9
), p.
091501
.10.1115/1.4002809
21.
Healy
,
D.
,
Kalitan
,
D. M.
,
Aul
,
C. J.
,
Petersen
,
E. L.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2011
, “
Oxidation of C1-C5 Alkane Quinternary Natural Gas Mixtures at High Pressures
,”
Energy Fuels
,
24
(
3
), pp.
1521
1528
.10.1021/ef9011005
22.
Metcalfe
,
W. K.
,
Burke
,
S. M.
,
Aul
,
C. J.
,
Petersen
,
E. L.
, and
Curran
,
H. J.
,
2011
, “
A Detailed Chemical Kinetic Modelling and Experimental Study of C1-C2 Hydrocarbons
,”
Proceedings of the European Combustion Meeting
,
Cardiff, UK
, June 28–July 1.
23.
Laskin
,
A.
,
Wang
,
H.
, and
Law
,
C. K.
,
2000
, “
Detailed Kinetic Model of 1,3-Butadiene Oxidation at High Temperatures
,”
Int. J. Chem. Kinet.
,
32
, pp.
589
614
.10.1002/1097-4601(2000)32:10<589::AID-KIN2>3.0.CO;2-U
24.
Davis
,
S. G.
,
Law
,
C. K.
, and
Wang
,
H.
,
1999
, “
Propene Pyrolysis and Oxidation Kinetics in a Flow Reactor and Laminar Flames
,”
Combust. Flame
,
119
, pp.
375
399
.10.1016/S0010-2180(99)00070-X
25.
CHEMKIN-PRO 15101
,
2010
,
Reaction Design
,
San Diego
.
26.
Aluri
,
N. K.
,
Muppala
,
S.
, and
Dinkelacker
,
F.
,
2006
, “
Substantiating a Fractal-Based Algebraic Reaction Closure of Premixed Turbulent Combustion for High-Pressure and the Lewis Number Effects
,”
Combust. Flame
,
145
, pp.
663
674
.10.1016/j.combustflame.2006.02.004
27.
Nakahara
,
M.
, and
Kido
,
H.
,
1998
, “
A Study of the Premixed Turbulent Combustion Mechanism Taking the Preferential Diffusion Effect into Consideration
,”
Mem. Fac. Eng., Kyushu Univ.
,
58
(
2
), pp.
55
82
.
28.
Lipatnikov
,
A. N.
, and
Chomiak
,
J.
,
2005
, “
Molecular Transport Effects on Turbulent Flame Propagation and Structure
,”
Prog. Energy Combust. Sci.
,
31
, pp.
1
71
.10.1016/j.pecs.2004.07.001
29.
Muppala
,
S.
,
Wen
,
J.
,
Aluri
,
N. K.
, and
Dinkelacker
,
F.
,
2007
, “
Molecular Transport Effects of Hydrocarbon Addition on Turbulent Hydrogen Flame Propagation
,”
HYSAFE Conference
,
San Sebastian, Spain, September 11–13
.
You do not currently have access to this content.