Laminar flame speeds and ignition delay times have been measured for hydrogen and various compositions of H2/CO (syngas) at elevated pressures and elevated temperatures. Two constant-volume cylindrical vessels were used to visualize the spherical growth of the flame through the use of a schlieren optical setup to measure the laminar flame speed of the mixture. Hydrogen experiments were performed at initial pressures up to 10 atm and initial temperatures up to 443 K. A syngas composition of 50/50 by volume was chosen to demonstrate the effect of carbon monoxide on H2-O2 chemical kinetics at standard temperature and pressures up to 10 atm. All atmospheric mixtures were diluted with standard air, while all elevated-pressure experiments were diluted with a He:O2 ratio of 7:1 to minimize instabilities. The laminar flame speed measurements of hydrogen and syngas are compared to available literature data over a wide range of equivalence ratios, where good agreement can be seen with several data sets. Additionally, an improved chemical kinetics model is shown for all conditions within the current study. The model and the data presented herein agree well, which demonstrates the continual, improved accuracy of the chemical kinetics model. A high-pressure shock tube was used to measure ignition delay times for several baseline compositions of syngas at three pressures across a wide range of temperatures. The compositions of syngas (H2/CO) by volume presented in this study included 80/20, 50/50, 40/60, 20/80, and 10/90, all of which are compared to previously published ignition delay times from a hydrogen-oxygen mixture to demonstrate the effect of carbon monoxide addition. Generally, an increase in carbon monoxide increases the ignition delay time, but there does seem to be a pressure dependency. At low temperatures and pressures higher than about 12 atm, the ignition delay times appear to be indistinguishable with an increase in carbon monoxide. However, at high temperatures the relative composition of H2 and CO has a strong influence on ignition delay times. Model agreement is good across the range of the study, particularly at the elevated pressures.

References

References
1.
Chacartegui
,
R.
,
Sánchez
,
D.
,
Muñoz de Escalona
,
J. M.
,
Jimenez-Espadafor
,
F.
,
Muñoz
,
A.
, and
Sánchez
,
T.
,
2012
, “
SPHERA Project: Assessing the Use of Syngas Fuels in Gas Turbines and Combined Cycles From a Global Perspective
,”
Fuel Processing Tech.
,
103
, pp.
134
145
.10.1016/j.fuproc.2011.11.004
2.
Vagelopoulos
,
C. M.
,
Egolfopoulos
,
F. N.
, and
Law
,
C. K.
,
1994
, “
Further Considerations on the Determination of Laminar Flame Speeds With the Counterflow Twin-Flame Technique
,”
Proc. Combust. Inst.
,
25
, pp.
1341
1347
.10.1016/S0082-0784(06)80776-9
3.
Pareja
,
J.
,
Burbano
,
H. J.
, and
Ogami
,
Y.
,
2010
, “
Measurements of the Laminar Burning Velocity of Hydrogen-Air Premixed Flames
,”
Int. J. Hydrogen Energy
,
35
, pp.
1812
1818
.10.1016/j.ijhydene.2009.12.031
4.
Burke
,
M. P.
,
Chen
,
Z.
,
Ju
,
Y.
, and
Dryer
,
F. L.
,
2009
, “
Effect of Cylindrical Confinement on the Determination of Laminar Flame Speeds Using Outwardly Propagating Flames
,”
Combust. Flame
,
156
, pp.
771
779
.10.1016/j.combustflame.2009.01.013
5.
Egolfopoulos
,
F. N.
, and
Law
,
C. K.
,
1990
, “
An Experimental and Computational Study of the Burning Rates of Ultra-Lean to Moderately-Rich H2/O2/N2 Laminar Flames With Pressure Variations
,”
Proc. Combust. Inst.
,
23
, pp.
333
340
.10.1016/S0082-0784(06)80276-6
6.
Tse
,
S. D.
,
Zhu
,
D. L.
, and
Law
,
C. K.
,
2000
, “
Morphology and Burning Rates of Expanding Spherical Flames in H2/O2/Inert Mixtures up to 60 Atmospheres
,”
Proc. Combust. Inst.
,
28
, pp.
1793
1800
.10.1016/S0082-0784(00)80581-0
7.
Lamoureux
,
N.
,
Djebaili-Chaumeix
,
N.
, and
Paillard
,
C. E.
,
2003
, “
Laminar Flame Velocity Determination for H2-Air-He-CO2 Mixtures Using the Spherical Bomb Method
,”
Exp. Thermal Fluid Sci.
,
27
, pp.
385
393
.10.1016/S0894-1777(02)00243-1
8.
Aung
,
K. T.
,
Hassan
,
M. I.
, and
Faeth
,
G. M.
,
1997
, “
Flame Stretch Interactions of Laminar Premixed Hydrogen/Air Flames at Normal Temperature and Pressure
,”
Combust. Flame
,
109
, pp.
1
24
.10.1016/S0010-2180(96)00151-4
9.
Kuznetsov
,
M.
,
Redlinger
,
R.
,
Breitung
,
W.
,
Grune
,
J.
,
Friedrich
,
A.
, and
Ichikawa
,
N.
,
2010
, “
Laminar Burning Velocities of Hydrogen-Oxygen-Steam Mixtures at Elevated Temperatures and Pressures
,”
Proc. Combust. Inst.
,
33
, pp.
895
903
.10.1016/j.proci.2010.06.050
10.
Verhelst
,
S.
,
Woolley
,
R.
,
Lawes
,
M.
, and
Sierens
,
R.
,
2005
, “
Laminar and Unstable Burning Velocities and Markstein Lengths of Hydrogen-Air Mixtures at Engine-Like Conditions
,”
Proc. Combust. Inst.
,
30
, pp.
209
216
.10.1016/j.proci.2004.07.042
11.
Dahoe
,
A. E.
,
2005
, “
Laminar Burning Velocities of Hydrogen-Air Mixtures From Closed Vessel Gas Explosions
,”
J. Loss Prev. Process Ind.
,
18
, pp.
152
166
.10.1016/j.jlp.2005.03.007
12.
Kwon
,
O. C.
, and
Faeth
,
G. M.
,
2001
, “
Flame/Stretch Interactions of Premixed Hydrogen-Fueled Flames: Measurements and Predictions
,”
Combust. Flame
,
124
, pp.
590
610
.10.1016/S0010-2180(00)00229-7
13.
Hu
,
E.
,
Huang
,
Z.
,
He
,
J.
, and
Miao
,
H.
,
2009
, “
Experimental and Numerical Study on Laminar Burning Velocities and Flame Instabilities of Hydrogen-Air Mixtures at Elevated Pressures and Temperatures
,”
Int. J. Hydrogen Energy
,
34
, pp.
8741
8755
.10.1016/j.ijhydene.2009.08.044
14.
Das
,
A. K.
,
Kumar
,
K.
, and
Sung
,
C.-J.
,
2011
, “
Laminar Flame Speeds of Moist Syngas Mixtures
,”
Combust. Flame
,
158
, pp.
345
353
.10.1016/j.combustflame.2010.09.004
15.
Burke
,
M. P.
,
Qin
,
X.
,
Ju
,
Y.
, and
Dryer
,
F. L.
,
2007
, “
Measurements of Hydrogen Syngas Flame Speeds at Elevated Pressures
,”
5th U.S. Combustion Meeting
, San Diego, CA, March 25–28, Paper No. A16.
16.
Natarajan
,
J.
,
Kochar
,
Y.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2009
, “
Pressure and Preheat Dependence of Laminar Flame Speeds of H2/CO/CO2/O2/He Mixtures
,”
Proc. Combust. Inst.
,
32
, pp.
1261
1268
.10.1016/j.proci.2008.06.110
17.
Natarajan
,
J.
,
Nandula
,
S.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2005
, “
Laminar Flame Speeds of Synthetic Gas Fuel Mixtures
,”
ASME
Paper No. GT2005-68917.10.1115/GT2005-68917
18.
McLean
,
I. C.
,
Smith
,
D. B.
, and
Taylor
,
S.C.
,
1994
, “
The Use of Carbon Monoxide/Hydrogen Burning Velocities to Examine the Rate of the CO + OH Reaction
,”
Proc. Combust. Inst.
,
25
, pp.
749
757
.10.1016/S0082-0784(06)80707-1
19.
Dong
,
C.
,
Zhou
,
Q.
,
Zhao
,
Q.
,
Zhang
,
Y.
,
Xu
,
T.
, and
Hui
,
S.
,
2009
, “
Experimental Study on the Laminar Flame Speed of Hydrogen/Carbon Monoxide/Air Mixtures
,”
Fuel
,
88
, pp.
1858
1863
.10.1016/j.fuel.2009.04.024
20.
Hassan
,
M. I.
,
Aung
,
K. T.
, and
Faeth
,
G. M.
,
1997
, “
Properties of Laminar Premixed CO/H2/Air Flames at Various Pressures
,”
J. Prop. Power
,
13
, pp.
239
245
.10.2514/2.5154
21.
Bouvet
,
N.
,
Chauveau
,
C.
,
Gokalp
,
I.
, and
Halter
,
F.
,
2011
, “
Experimental Studies of the Fundamental Flame Speeds of Syngas (H2/CO)/Air Mixtures
,”
Proc. Combust. Inst.
,
33
, pp.
913
920
.10.1016/j.proci.2010.05.088
22.
Prathap
,
C.
,
Ray
,
A.
, and
Ravi
,
M. R.
,
2008
, “
Investigation of Nitrogen Dilution Effects on the Laminar Burning Velocities and Flame Stability of Syngas Fuel at Atmospheric Condition
,”
Combust. Flame
,
155
, pp.
145
160
.10.1016/j.combustflame.2008.04.005
23.
Burke
,
M. P.
,
Chaos
,
M.
,
Dryer
,
F. L.
, and
Ju
,
Y.
,
2010
, “
Negative Pressure Dependence of Mass Burning Rates of H2/CO/O2/Diluent Flames at Low Flame Temperature
,”
Combust. Flame
,
157
, pp.
618
631
.10.1016/j.combustflame.2009.08.009
24.
Sun
,
H.
,
Yang
,
S. I.
,
Jomaas
,
G.
, and
Law
,
C. K.
,
2007
, “
High-Pressures Laminar Flame Speeds and Kinetic Modeling of Carbon Monoxide/Hydrogen Combustion
,”
Proc. Combust. Inst.
,
31
, pp.
439
446
.10.1016/j.proci.2006.07.193
25.
de Vries
,
J.
,
Lowry
,
W.
,
Serinyel
,
Z.
,
Curran
,
H.
, and
Petersen
,
E.
,
2011
, “
Laminar Flame Speed Measurements of Dimethyl Ether in Air at Pressures up to 10 atm
,”
Fuel
,
90
(
1
), pp.
331
338
.10.1016/j.fuel.2010.07.040
26.
Lowry
,
W.
,
de Vries
,
J.
,
Krejci
,
M.
,
Serinyel
,
Z.
,
Metcalfe
,
W.
,
Curran
,
H.
,
Petersen
,
E.
, and
Bourque
G.
,
2011
, “
Laminar Flame Speed Measurements and Modeling of Pure Alkanes and Alkane Blends at Elevated Pressures
,”
ASME J. Eng. Gas Turbines Power
,
133
(
9
), p. 091501.10.1115/1.4002809
27.
Krejci
,
M.
,
Vissotski
,
A.
,
Lowry
,
W.
,
Ravi
,
S.
, and
Petersen
,
E.
,
2011
, “
Development of a High-Temperature and High-Pressure Vessel for Laminar Flame Speed Measurements
,” 7th U.S. National Combustion Meeting (Combustion Institute), Atlanta, GA, March 20–23.
28.
Settles
,
G. S.
,
2006
,
Schlieren and Shadowgraph Techniques
,
Springer
,
Heidelberg, Germany
.
29.
Petersen
,
E. L.
,
Rickard
,
M. J. A.
,
Crofton
,
M. W.
,
Abbey
,
E. D.
,
Traum
,
M. J.
, and
Kalitan
,
D. M.
,
2005
, “
A Facility for Gas- and Condensed-Phase Measurements Behind Shock Waves
,”
Meas. Sci. Technol.
,
16
, pp.
1716
1729
.10.1088/0957-0233/16/9/003
30.
Markstein
,
G. H.
,
1964
,
Non-Steady Flame Propagation
,
Pergamon
,
New York
.
31.
Dowdy
,
D. R.
,
Smith
,
D. B.
,
Taylor
,
S. C.
, and
Williams
,
A.
,
1990
, “
The Use of Expanding Spherical Flames to Determine Burning Velocities and Stretch Effects in Hydrogen/Air Mixtures
,”
Proc. Combust. Inst.
,
23
, pp.
325
332
.10.1016/S0082-0784(06)80275-4
32.
Brown
,
J. M.
,
McLean
,
I. C.
,
Smith
,
D. B.
, and
Taylor
,
S. C.
,
1996
, “
Markstein Lengths of CO/H2/Air Flames, Using Expanding Spherical Flames
,”
Proc. Combust. Inst.
,
26
, pp.
875
881
.10.1016/S0082-0784(96)80297-9
33.
Reynolds
,
W. C.
,
1986
, “
The Element Potential Method for Chemical Equilibrium Analysis: Implementation in the Interactive Program STANJAN
,”
Department of Mechanical Engineering, Stanford University
, Stanford, CA.
34.
Moffat
,
R. J.
,
1988
, “
Describing Uncertainties in Experimental Results
,”
Exp. Thermal Fluid Sci.
,
1
pp.
3
17
.10.1016/0894-1777(88)90043-X
35.
NUI Galway, 2011, “Combustion Chemistry Centre,” National University of Ireland, Galway, Ireland, http://c3.nuigalway.ie/
36.
Ó Conaire
,
M.
,
Curran
,
H. J.
,
Simmie
,
J. M.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2004
, “
A Comprehensive Modeling Study of Hydrogen Oxidation
,”
Int. J. Chem. Kinet.
,
36
, pp.
603
622
.10.1002/kin.20036
37.
Kéromnès
,
A.
,
Metcalfe
,
W. K.
,
Donohoe
,
N.
,
Curran
,
H. J.
, and
Pitz
,
W. J.
,
2011
, “
Detailed Chemical Kinetic Model for H2 and H2/CO (Syngas) Mixtures at Elevated Pressure
,” 7th U.S. National Combustion Meeting (Combustion Institute), Atlanta, GA, March 21–23.
38.
Kéromnès
A.
,
Metcalfe
,
W. K.
,
Heufer
,
K. A.
,
Donohoe
,
N.
,
Das
,
A. K.
,
Sung
,
C. J.
,
Herzler
,
J.
,
Naumann
,
K.
,
Griebel
,
P.
,
Mathieu
,
O.
,
Krejci
,
M. J.
,
Petersen
,
E. L.
,
Pitz
,
W. J.
, and
Curran
,
H. J.
,
2012
, “
An Experimental and Detailed Chemical Kinetic Modelling Study of Hydrogen and Syngas Mixtures at Elevated Pressures
,”
Combust. Flame
(in press).
39.
Hong
,
Z.
,
Davidson
,
D. F.
,
Barbour
,
E. A.
, and
Hanson
,
R. K.
,
2011
, “
A New Shock Tube Study of the H + O2 → OH + O Reaction Rate Using Tunable Diode Laser Absorption of H2O Near 2.5 μm
,”
Proc. Combust. Inst.
,
33
, pp.
309
316
.10.1016/j.proci.2010.05.101
40.
Fernandes
,
R. X.
,
Luther
,
K.
,
Troe
,
J.
, and
Ushakov
,
V. G.
,
2008
, “
Experimental and Modelling Study of the Recombination Reaction H + O2 (+M) → HO2 (+M) Between 300 and 900 K, 1.5 and 950 bar, and in the Bath Gases M = He, Ar, and N2
,”
Phys. Chem. Chem. Phys.
,
10
(
29
), pp.
4313
4321
.10.1039/b804553d
41.
Troe
,
J.
,
2011
, “
The Thermal Dissociation/Recombination Reaction of Hydrogen Peroxide H2O2(+M)⇔2OH(+M) III.: Analysis and Representation of the Temperature and Pressure Dependence Over Wide Ranges
,”
Combust. Flame
,
158
, pp.
594
601
.10.1016/j.combustflame.2010.08.013
42.
Ellingson
,
B. A.
,
Theis
,
D. P.
,
Tishchenko
,
O.
,
Zheng
,
J.
, and
Truhlar
,
D. G.
,
2007
, “
Reactions of Hydrogen Atom With Hydrogen Peroxide
,”
J. Phys. Chem. A
,
111
(
51
), pp.
13554
13566
.10.1021/jp077379x
43.
CHEMKIN-PRO 15101
, 2010,
Reaction Design, San Diego
.
44.
Krejci
,
M. C.
,
Mathieu
,
O.
,
Vissotski
,
A. J.
,
Ravi
,
S.
,
Sikes
,
T. G.
,
Petersen
,
E. L.
,
Kéromnès
,
A.
,
Metcalfe
,
W.
, and
Curran
,
H. J.
,
2012
, “
Laminar Flame Speed and Ignition Delay Time Data for the Kinetic Modeling of Hydrogen and Syngas Fuel Blends
,” ASME Paper No. GT2012-69290.
You do not currently have access to this content.