The influence of the thermal boundary condition at the combustor wall and combustor confinement on the dynamic flame response of a perfectly premixed axial swirl burner is investigated. Large eddy simulations are carried out using the dynamically thickened flame combustion model. Then system identification methods are used to determine the flame transfer function (FTF) from the computed time series data. Two configurations are compared against a reference case with a 90 mm × 90 mm combustor cross section and nonadiabatic walls: (1) a combustor cross section similar to the reference case with adiabatic combustor walls, and (2) a different confinement (160 mm × 160 mm) with nonadiabatic walls. It is found that combustor confinement and thermal boundary conditions have a noticeable influence on the flame response due to differences in the flame shape and flow field. In particular, the FTF computed with an adiabatic wall boundary condition which produces a flame with a significant heat release in both shear layers, differs significantly from the FTF with nonadiabatic walls, where the flame stabilizes only in the inner shear layer. The observed differences in the flow field and flame shape are discussed in relation to the unit impulse response of the flame. The impact of the differences in the FTF on stability limits is analyzed with a low-order thermoacoustic model.

References

References
1.
Lieuwen
,
T.
and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modelling
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
2.
Poinsot
,
T.
and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
2nd ed.
,
R. T. Edwards
,
Philadelphia
.
3.
Polifke
,
W.
,
2010
, “
Low-Order Analysis Tools for Aero- and Thermo-Acoustic Instabilities
,”
Advances in Aero-Acoustics and Thermo-Acoustics
,
C.
Schram
, ed.,
von Karman Institute for Fluid Dynamics
,
Brussels
.
4.
Leandro
,
R.
,
Huber
,
A.
, and
Polifke
,
W.
,
2010
, “
taX—A Low-Order Modeling tool for Thermo- and Aero-Acoustic Instabilities
,” Technical Report, TU München, www.td.mw.tum.de/tum-td/en/forschung/infrastruktur/scientific_comp/taX_manual.pdf
5.
Kaess
,
R.
,
Polifke
,
W.
,
Poinsot
,
T.
,
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2008
, “
CFD-Based Mapping of the Thermo-Acoustic Stability of a Laminar Premix Burner
,”
Proceedings of the 12th Biennial Summer
Program, Center for Turbulence Research, Stanford, CT, July 6–August 1.
6.
Duchaine
,
F.
and
Poinsot
,
T.
,
2010
, “
Sensitivity of Flame Transfer Functions of Laminar Flames
,”
Proceedings of the Summer Program CTR
, Stanford.
7.
Schmitt
,
P.
,
Poinsot
,
T.
,
Schuermans
,
B.
, and
Geigle
,
K. P.
,
2007
, “
Large-Eddy Simulation and Experimental Study of Heat Transfer, Nitric Oxide Emissions and Combustion Instability in a Swirled Turbulent High-Pressure Burner
,”
J. Fluid Mech.
,
570
, pp.
17
46
.10.1017/S0022112006003156
8.
Durox
,
D.
,
Schuller
,
T.
,
Noiray
,
N.
, and
Candel
,
S.
,
2009
, “
Experimental Analysis of Nonlinear Flame Transfer Functions for Different Flame Geometries
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1391
1398
.10.1016/j.proci.2008.06.204
9.
Beltagui
,
S.
and
MacCallum
,
N.
,
1976
, “
Aerodynamics of Vane-Swirled Flames in Furnaces
,”
J. Inst. Fuel
,
49
(
401
), pp.
183
193
.
10.
Fu
,
Y.
,
Cai
,
J.
,
Jeng
,
S.
, and
Mongia
,
H.
,
2005
, “
Confinement Effects on the Swirling Flow of a Counter-Rotating Swirl Cup
,”
Proceedings of the ASME Turbo Expo 2005
, Reno, NV, June 6–9,
ASME
Paper No. GT2005-68622.10.1115/GT2005-68622
11.
Fanaca
,
D.
,
Alemela
,
P.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
, and
Schuermanns
,
B.
,
2010
, “
Comparison of the Flow Field of a Swirl Stabilized Premixed Burner in an Annular and a Single Burner Combustion Chamber
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
071502
.10.1115/1.4000120
12.
Hauser
,
M.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2011
, “
Influence of the Confinement on the Flame Transfer Function
,”
18th International Congress on Sound and Vibration
, Rio de Janeiro, Brazil, July 10–14.
13.
Birbaud
,
A. L.
,
Durox
,
D.
,
Ducruix
,
S.
, and
Candel
,
S.
,
2007
, “
Dynamics of Confined Premixed Flames Submitted to Upstream Acoustic Modulations
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1257
1265
.10.1016/j.proci.2006.07.122
14.
Tay-Wo-Chong
,
L.
,
Bomberg
,
S.
,
Ulhaq
,
A.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2012
, “
Comparative Validation Study on Identification of Premixed Flame Transfer Function
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
021502
.10.1115/1.4004183
15.
Kopitz
,
J.
,
Bröcker
,
E.
, and
Polifke
,
W.
,
2005
, “
Characteristics-Based Filter for Identification of Planar Acoustic Waves in Numerical Simulation of Turbulent Compressible Flow
,”
12th International Congress on Sound and Vibration
, Lisbon, Portugal, July 11–14.
16.
Polifke
,
W.
,
2010
, “
System Identification for Aero- and Thermo-Acoustic Applications
,”
Advances in Aero-Acoustics and Thermo-Acoustics
,
C.
Schram
, ed.,
von Karman Institute for Fluid Dynamics
,
Brussels
.
17.
Polifke
,
W.
,
Poncet
,
A.
,
Paschereit
,
C. O.
, and
Döbbeling
,
K.
,
2001
, “
Reconstruction of Acoustic Transfer Matrices by Instationary Computational Fluid Dynamics
,”
J. Sound Vib.
,
245
(
3
), pp.
483
510
.10.1006/jsvi.2001.3594
18.
Huber
,
A.
and
Polifke
,
W.
,
2009
, “
Dynamics of Practical Premixed Flames—Part I: Model Structure and Identification
,”
Int. J. Spray Combust. Dyn.
,
1
(
2
), pp.
199
228
.10.1260/175682709788707431
19.
Tay-Wo-Chong
,
L.
,
Komarek
,
T.
,
Kaess
,
R.
,
Föller
,
S.
, and
Polifke
,
W.
,
2010
, “
Identification of Flame Transfer Functions From LES of a Premixed Swirl Burner
,”
Proceedings of the ASME Turbo Expo 2010
,
Glasgow, UK
, June 14–18,
ASME
Paper No. GT2010-22769.10.1115/GT2010-22769
20.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.10.1063/1.870436
21.
Legier
,
J.
,
Poinsot
,
T.
, and
Veynante
,
D.
,
2000
, “
Large Eddy Simulation Model for Premixed and Non-Premixed Turbulent Combustion
,”
Proceedings of the 2000 Summer Program
, Center for Turbulence Research, Stanford, CT, July 2–27, pp.
157
168
.
22.
Komarek
,
T.
and
Polifke
,
W.
,
2010
, “
Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
132
, p.
061503
.10.1115/1.4000127
23.
CERFACS
,
2008
, “
The AVBP Code
,” http://www.cerfacs.fr/4-26334-The-AVBP-code.php
24.
Nicoud
,
F.
and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modeling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
, pp.
183
200
.10.1023/A:1009995426001
25.
Tay-Wo-Chong
,
L.
,
2012
, “
Numerical Simulation of the Dynamics of Turbulent Swirling Flames
,” Ph.D. thesis,
Technische Universit¨at München
,
Garching
, Germany.
26.
Moureau
,
V.
,
Lartigue
,
G.
,
Sommerer
,
Y.
,
Angelberger
,
C.
,
Colin
,
O.
, and
Poinsot,
T.
,
2005
, “
Numerical Methods for Unsteady Compressible Multi-Component Reacting Flows on Fixed and Moving Grids
,”
J. Comput. Phys.
,
202
, pp.
710
736
.10.1016/j.jcp.2004.08.003
27.
Föller
,
S.
,
Kaess
,
R.
, and
Polifke
,
W.
,
2010
, “
Determination of Acoustic Transfer Matrices Via Large Eddy Simulation and System Identification
,”
16th AIAA/CEAS Aeroacoustics Conference
, Stockholm, Sweden, June 7–9, Paper No. AIAA-2010-3998.
28.
Kaess
,
R.
,
Huber
,
A.
, and
Polifke
,
W.
,
2008
, “
Time-Domain Impedance Boundary Condition for Compressible Turbulent Flows
,”
14th AIAA/CEAS Aeroacoustics Conference
, Vancouver, May 5–9, Paper No. AIAA-2008-2921.
29.
Poinsot
,
T.
and
Lele
,
S.
,
1992
, “
Boundary Conditions for Direct Simulation of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
, pp.
104
129
.10.1016/0021-9991(92)90046-2
30.
Polifke
,
W.
,
Wall
,
C.
, and
Moin
,
P.
,
2006
, “
Partially Reflecting and Non-Reflecting Boundary Conditions for Simulation of Compressible Viscous Flow
,”
J. Comput. Phys.
,
213
, pp.
437
449
.10.1016/j.jcp.2005.08.016
31.
Fanaca
,
D.
, 2009, private communication.
32.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
A Unified Model for the Prediction of Laminar Flame Transfer Functions: Comparisons Between Conical and V-Flame Dynamics
,”
Combust. Flame
,
134
, pp.
21
34
.10.1016/S0010-2180(03)00042-7
33.
Hirsch
,
C.
,
Fanaca
,
D.
,
Reddy
,
P.
,
Polifke
,
W.
, and
Sattelmayer
,
T.
,
2005
, “
Influence of the Swirler Design on the Flame Transfer Function of Premixed Flames
,”
Proceedings of the ASME Turbo Expo 2005
, Reno, NV, June 6–9,
ASME
Paper No. GT2005-68195.10.1115/GT2005-68195
34.
Kim
,
K.
,
Lee
,
J.
,
Lee
,
H.
,
Quay
,
B.
, and
Santavicca
,
D.
,
2009
, “
Characterization of Forced Flame Response of Swirl-Stabilized Turbulent Premixed Flames
,”
Proceedings of the ASME Turbo Expo 2009
, Orlando, FL, June 8–12,
ASME
Paper No. GT2009-60031.10.1115/GT2009-60031
35.
Kim
,
K.
,
Lee
,
H.
,
Lee
,
J.
,
Quay
,
B.
, and
Santavicca
,
D.
,
2009
, “
Flame Transfer Function Measurement and Instability Frequency Prediction Using a Thermoacoustic Model
,”
Proceedings of the ASME Turbo Expo 2009
, Orlando, FL, June 8–12,
ASME
Paper No. GT2009-60026.10.1115/GT2009-60026
36.
Kim
,
K.
,
Lee
,
J.
,
Quay
,
B.
, and
Santavicca
D.
,
2010
, “
Spatially Distributed Flame Transfer Functions for Predicting Combustion Dynamics in Lean Premixed Gas Turbine Combustors
,”
Combust. Flame
,
157
(
9
), pp.
1718
1730
.10.1016/j.combustflame.2010.04.016
37.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
Self-Induced Combustion Oscillations of Laminar Premixed Flames Stabilized on Annular Burners
,”
Combust. Flame
,
135
, pp.
525
537
.10.1016/j.combustflame.2003.08.007
38.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2010
, “
The Combined Dynamics of Swirler and Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
157
, pp.
1698
1717
.10.1016/j.combustflame.2010.02.011
39.
Palies
,
P.
,
Schuller
,
T.
,
Durox
,
D.
,
Gicquel
,
L. Y. M.
, and
Candel
,
S.
,
2011
, “
Acoustically Perturbed Turbulent Premixed Swirling Flames
,”
Phys. Fluids
,
23
(
3
), p.
037101
.10.1063/1.3553276
40.
Schuermans
,
B.
,
Bellucci
,
V.
,
Guethe
,
F.
,
Meili
,
F.
,
Flohr
,
P.
, and
Paschereit
,
O.
,
2004
, “
A Detailed Analysis of Thermoacoustic Interaction Mechanisms in a Turbulent Premixed Flame
,”
Proceedings of the ASME Turbo Expo 2004
, Vienna, June 14–17,
ASME
Paper No. GT2004-53831.10.1115/GT2004-53831
41.
Polifke
,
W.
and
Lawn
,
C.
,
2007
, “
On the Low-Frequency Limit of Flame Transfer Functions
,”
Combust. Flame
,
151
(
3
), pp.
437
451
.10.1016/j.combustflame.2007.07.005
You do not currently have access to this content.