Humidified gas turbines (HGT) offer the attractive possibility of increasing plant efficiency without the cost of an additional steam turbine as is the case for a combined gas-steam cycle. In addition to efficiency gains, adding steam into the combustion process reduces NOx emissions. It increases the specific heat capacity (hence, lowering possible temperature peaks) and reduces the oxygen concentration. Despite the thermophysical effects, steam alters the kinetics and, thus, reduces NOx formation significantly. In addition, it allows operation using a variety of fuels, including hydrogen and hydrogen-rich fuels. Therefore, ultra-wet gas turbine operation is an attractive solution for industrial applications. The major modification compared to current gas turbines lies in the design of the combustion chamber, which should accommodate a large amount of steam without losing in stability. In the current study, the premixed combustion of pure hydrogen diluted with different steam levels is investigated. The effect of steam on the combustion process is addressed using detailed chemistry. In order to identify an adequate oxidation mechanism, several candidates are identified and compared. The respective performances are assessed based on laminar premixed flame calculations under dry and wet conditions, for which experimentally determined flame speeds are available. Further insight is gained by observing the effect of steam on the flame structure, in particular HO2 and OH* profiles. Moreover, the mechanism is used for the simulation of a turbulent flame in a generic swirl burner fed with hydrogen and humidified air. Large eddy simulations (LES) are employed. It is shown that by adding steam, the heat release peak spreads. At high steam content, the flame front is thicker and the flame extends further downstream. The dynamics of the oxidation layer under dry and wet conditions is captured; thus, an accurate prediction of the velocity field, flame shape, and position is achieved. The latter is compared with experimental data (PIV and OH* chemiluminescence). The reacting simulations were conducted under atmospheric conditions. The steam-air ratio was varied from 0% to 50%.

References

References
1.
Bhargava
,
A.
,
Colket
,
M.
,
Sowa
,
W.
,
Casleton
,
K.
, and
Maloney
,
D.
,
2000
, “
An Experimental and Modeling Study of Humid Air Premixed Flames
,”
J. Eng. Gas Turbines Power
,
122
, pp.
405
411
.10.1115/1.1286921
2.
Göke
,
S.
,
Göckeler
,
K.
,
Krüger
,
O.
, and
Paschereit
,
C. O.
,
2010
, “
Computational and Experimental Study of Premixed Combustion at Ultra Wet Conditions
,”
Proceedings of the ASME Turbo Expo 2010
, Glasgow, UK, June 14–18,
ASME
Paper No. GT2010-23417, pp.
1
11
.10.1115/GT2010-23417
3.
Jonsson
,
M.
, and
Yan
,
J.
,
2005
, “
Humidified Gas Turbines—A Review of Proposed and Implemented Cycles
,”
Energy
,
30
, pp.
1013
1078
.10.1016/j.energy.2004.08.005
4.
Bianco
,
M.
,
Camporeale
,
S. M.
, and
Fortunato
,
B.
,
2001
, “
CFD Simulation of Humid Air Premixed Flame Combustion Chamber for Evaporative Gas Turbine Cycles
,”
Proceedings of the ASME Turbo Expo 2001
, New Orleans, LA, June 4–7,
ASME
Paper No. GT2001-0061.
5.
Guo
,
P.
,
Zang
,
S.
, and
Ge
,
B.
,
2008
, “
LES and Experimental Study of Flow Features in Humid-Air Combustion Chamber With Non-Premixed Circular-Disc Stabilized Flames
,”
Proceedings of ASME Turbo Expo 2008
, Berlin, June 9–13,
ASME
Paper No. GT2008-50940.10.1115/GT2008-50940
6.
Ó.
Conaire
,
M.
,
Curran
,
H. J.
,
Simmie
,
J. M.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2004
, “
A Comprehensive Modeling Study of Hydrogen Oxidation
,”
Int. J. Chem. Kinet.
,
36
(
11
), pp.
603
622
.10.1002/kin.20036
7.
Dowdy
,
D
.,
1991
, “
The Use of Expanding Spherical Flames to Determine Burning Velocities and Stretch Effects in Hydrogen/Air Mixtures
,”
Sym. (Int.) Combust.
,
23
(
1
), pp.
325
332
.10.1016/S0082-0784(06)80275-4
8.
Tse
,
S.
,
Zhu
,
D.
, and
Law
,
C.
,
2000
, “
Morphology and Burning Rates of Expanding Spherical Flames in H2/O2/Inert Mixtures up to 60 Atmospheres
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1793
1800
.10.1016/S0082-0784(00)80581-0
9.
David
,
W. T.
, and
Mann
,
J.
,
1942
, “
Influence of Water Vapour on Flame Gas Temperatures
,”
Nature
,
150
(
3809
), pp.
521
522
.10.1038/150521b0
10.
Kuehl
,
D. K.
,
1962
, “
Effects of Water on Burning Velocity of Hydrogen-Air Flames
,”
J. Am. Rocket Soc.
,
32
, pp.
1724
1726
.
11.
Levy
,
A
.,
1963
, “
Effects of Water on Hydrogen Flames
,”
AIAA J.
,
1
(
5
), pp.
1239
1239
.10.2514/3.54904
12.
Dixon-Lewis
,
G.
, and
Williams
,
A.
,
1964
, “
The Rate of Heat Release in Some Slow Burning Hydrogen-Oxygen Flames
,”
Combust. Flame
,
8
(
4
), pp.
249
255
.10.1016/0010-2180(64)90078-1
13.
Liu
,
D.
, and
MacFarlane
,
R.
,
1983
, “
Laminar Burning Velocities of Hydrogen-Air and Hydrogen-Air-Steam Flames
,”
Combust. Flame
,
49
(
1–3
), pp.
59
71
.10.1016/0010-2180(83)90151-7
14.
Koroll
,
G. W.
, and
Mulpuru
,
S. R.
,
1988
, “
The Effect of Dilution With Steam on the Burning Velocity and Structure of Premixed Hydrogen Flames
,”
Sym. (Int.) Combust.
,
21
(
1
), pp.
1811
1819
.10.1016/S0082-0784(88)80415-6
15.
Kwon
,
O.
, and
Faeth
,
G.
,
2001
, “
Flame/Stretch Interactions of Premixed Hydrogen-Fueled Flames: Measurements and Predictions
,”
Combust. Flame
,
124
(
4
), pp.
590
610
.10.1016/S0010-2180(00)00229-7
16.
Ströhle
,
J.
, and
Myhrvold
,
T.
,
2007
, “
An Evaluation of Detailed Reaction Mechanisms for Hydrogen Combustion Under Gas Turbine Conditions
,”
Int. J. Hydrogen Energy
,
32
(
1
), pp.
125
135
.10.1016/j.ijhydene.2006.04.005
17.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
,
2004
, “
An Updated Comprehensive Kinetic Model of Hydrogen Combustion
,”
Int. J. Chem. Kinet.
,
36
(
10
), pp.
566
575
.10.1002/kin.20026
18.
Burke
,
M. P.
,
Chaos
,
M.
,
Ju
,
Y.
,
Dryer
,
F. L.
, and
Klippenstein
,
S. J.
,
2012
, “
Comprehensive H2/O2 Kinetic Model for High-Pressure Combustion
,”
Int. J. Chem. Kinet.
,
44
(
7
), pp.
444
474
.10.1002/kin.20603
19.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C. J.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
2000
. “
GRI 3.0
,” Gas Research Institute, Chicago, IL, http://www.me.berkeley.edu/gri_mech/
20.
Lecong
,
T.
, and
Dagaut
,
P.
,
2009
, “
Oxidation of H2/CO2 Mixtures and Effect of Hydrogen Initial Concentration on the Combustion of CH2 and CH2/CO2 Mixtures: Experiments and Modeling
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
427
435
.10.1016/j.proci.2008.05.079
21.
Frassoldati
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2007
, “
The Ignition, Combustion and Flame Structure of Carbon Monoxide/Hydrogen Mixtures. Note 1: Detailed Kinetic Modeling of Syngas Combustion Also in Presence of Nitrogen Compounds
,”
Int. J. Hydrogen Energy
,
32
(
15
), pp.
3471
3485
.10.1016/j.ijhydene.2007.01.011
22.
Göke
,
S.
,
Terhaar
,
S.
,
Schimek
,
S.
,
Katharina
,
G.
, and
Paschereit
,
C. O.
,
2011
, “
Combustion of Natural Gas, Hydrogen and Bio-Fuels at Ultra-Wet Conditions
,”
Proceedings of the ASME Turbo Expo 2011
, Vancouver, Canada, June 6–10,
ASME
Paper No. GT2011-45696.10.1115/GT2011-45696
23.
Jaffe
,
S. M.
,
Larjo
,
J.
, and
Henberg
,
R.
,
1991
, “
Abel Inversion Using the Fast Fourier Transform
,”
Proceedings of the 10th International Symposium on Plasma Chemistry
(ISPC'10), Bochum, Germany, August 4–9.
24.
Terhaar
,
S.
,
Göckeler
,
K.
,
Schimek
,
S.
,
Göke
,
S.
, and
Paschereit
,
C. O.
,
2011
, “
Non-Reacting and Reacting Flow in a Swirl-Stabilized Burner for Ultra-Wet Combustion
,” AIAA Paper No. 2011-3584.
25.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
2nd ed.
,
R. T. Edwards Inc.
,
Flourtown, PA
.
26.
Weller
,
H. G.
,
Tabora
,
G.
, and
Jasak
,
H.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
27.
Smagorinsky
,
J
.,
1963
, “
General Circulation Experiments With the Primitive Equations, I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
28.
Krüger
,
O.
,
Duwig
,
C.
,
Göke
,
S.
,
Göckeler
,
K.
,
Terhaar
,
S.
,
Paschereit
,
C. O.
, and
Fuchs
,
L.
,
2011
, “
Numerical Investigations of a Swirl-Stabilized Premixed Flame at Ultra-Wet Conditions
,”
Proceedings of the ASME Turbo Expo 2011
, Vancouver, Canada, June 6–10,
ASME
Paper No. GT2011-45866, pp.
1
12
. 10.1115/GT2011-45866
29.
Krüger
,
O.
,
Duwig
,
C.
,
Göke
,
S.
,
Paschereit
,
C. O.
, and
Fuchs
,
L.
,
2011
, “
Large Eddy Simulation of Ultra-Wet Premixed Flames for Gas Turbine Applications
,”
Proceedings of the European Combustion Meeting 2011
, Cardiff, UK, June 29–July 1, pp.
1
6
.
30.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretized Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
, pp.
40
65
.10.1016/0021-9991(86)90099-9
31.
Smith
,
G. P.
,
Luque
,
J.
,
Park
,
C.
,
Jeffries
,
J. B.
, and
Crosley
,
D. R.
,
2002
, “
Low Pressure Flame Determinations of Rate Constants for OH(A) and CH(A) Chemiluminescence
,”
Combust. Flame
,
131
(
1–2
), pp.
59
69
.10.1016/S0010-2180(02)00399-1
32.
Fureby
,
C
.,
2007
, “
Comparison of Flamelet and Finite Rate Chemistry LES for Premixed Turbulent Combustion
,” AIAA Paper No. 2007-1413.
33.
Duwig
,
C.
, and
Fuchs
,
L.
,
2008
, “
Large Eddy Simulation of a H2/N2 Lifted Flame in a Vitiated Co-Flow
,”
Combust. Sci. Technol.
,
180
, pp.
453
480
.10.1080/00102200701741327
34.
Duwig
,
C.
,
Nogenmyr
,
K.-J.
,
Chan
,
C.-K.
, and
Dunn
,
M. J.
,
2011
, “
Large Eddy Simulations of a Piloted Lean Premix Jet Flame Using Finite-Rate Chemistry
,”
Combust. Theory Modell.
,
15
(
4
), pp.
537
568
.10.1080/13647830.2010.548531
35.
Selle
,
L.
,
2004
, “
Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
,
137
, pp.
489
505
.10.1016/j.combustflame.2004.03.008
36.
Sen
,
B. A.
, and
Menon
,
S.
,
2010
, “
Linear Eddy Mixing Based Tabulation and Artificial Neural Networks for Large Eddy Simulations of Turbulent Flames
,”
Combust. Flame
,
157
, pp.
62
74
.10.1016/j.combustflame.2009.06.005
37.
Duwig
,
C.
,
Fuchs
,
L.
,
Griebel
,
P.
,
Siewert
,
P.
, and
Boschek
,
E.
,
2007
, “
Study of a Confined Turbulent Jet: Influence of Combustion and Pressure
,”
AIAA J.
,
45
(
3
), pp.
624
639
.10.2514/1.26352
38.
Duwig
,
C.
, and
Fuchs
,
L.
,
2005
, “
Study of Flame Stabilization in a Swirling Combustor Using a New Flamelet Formulation
,”
Combust. Sci. Technol.
,
177
, pp.
1485
1510
.10.1080/00102200590956669
39.
Pitsch
,
H.
, and
de Lageneste
,
L.
,
2003
, “
Large-Eddy Simulation of Premixed Turbulent Combustion Using a Level-Set Approach
,”
Proc. Combust. Inst.
,
29
, pp.
2001
2008
.10.1016/S1540-7489(02)80244-9
40.
Giacomazzi
,
E.
, and
Battaglia
,
V.
,
2004
, “
The Coupling of Turbulence and Chemistry in a Premixed Bluff-Body Flame as Studied by LES
,”
Combust. Flame
,
134
(
4
), pp.
320
335
.10.1016/j.combustflame.2004.06.004
41.
Raman
,
S.
, and
Pitsch
,
H.
,
2007
, “
A Consistent LES/Filtered-Density Function Formulation for the Simulation of Turbulent Flames With Detailed Chemistry
,”
Proc. Combust. Inst.
,
31
, pp.
1711
1719
.10.1016/j.proci.2006.07.152
42.
Krüger
,
O.
,
Duwig
,
C.
,
Göckeler
,
K.
,
Terhaar
,
S.
,
Strangfeld
,
C.
,
Paschereit
,
C. O.
, and
Fuchs
,
L.
,
2011
, “
Identification of Coherent Structures in a Turbulent Generic Swirl Burner Using Large Eddy Simulations
,” AIAA Paper No. 2011-3549.
43.
Edmondson
,
H.
, and
Heap
,
M.
,
1971
, “
The Burning Velocity of Hydrogen-Air Flames
,”
Combust. Flame
,
16
(
2
), pp.
161
165
.10.1016/S0010-2180(71)80081-0
44.
Smith
,
G. P.
,
Park
,
C.
, and
Luque
,
J.
,
2005
, “
A Note on Chemiluminescence in Low-Pressure Hydrogen and Methane-Nitrous Oxide Flames
,”
Combust. Flame
,
140
(
4
), pp.
385
389
.10.1016/j.combustflame.2004.11.011
45.
Ferziger
,
J. H.
, and
Echekki
,
T.
,
1993
, “
A Simplified Reaction Rate Model and its Application to the Analysis of Premixed Flames
,”
Combust. Sci. Technol.
,
89
(
5–6
), pp.
293
315
.10.1080/00102209308924116
You do not currently have access to this content.