The micro hybrid spiral-grooved thrust bearing is a promising candidate to support the rotating elements in power MEMS devices such as micro gas turbine engines. However, the realization of hybrid thrust bearings has encountered a number of technical challenges due to the very high rotating speed and DN number (the product of the inner diameter and the rotational speed of the bearing, mm · rpm) to achieve high power density, the super thin gas film between rotors and thrust pad, and the relative large fabrication uncertainties according to the imperfection of the fabrication technology. In this paper, the configuration of a micro hybrid spiral-grooved thrust bearing for power MEMS is designed, and the steady and dynamic characteristics of this kind of bearing are then analyzed comprehensively, with the consideration of both the rarefaction effects and the influence of potential microfabrication defects. The nonlinear equations of molecular gas-film lubrication describing the gas rarefaction effects in a micro hybrid bearing are discretized by the finite volume method and solved by the Newton–Raphson techniques. The small perturbation technique is employed to study the dynamic behavior of a micro hybrid bearing. The results show that the micro hybrid thrust bearing exhibits better steady-state and dynamic performance than the existing micro hydrodynamic and hydrostatic bearings and that the hybrid bearings are likelier to be stable than their hydrodynamic counterparts, especially when the frequency number is high. The load capacity of the micro hybrid bearing increases slightly with the number of orifices and gradually with the diameter ratio of the orifice. The microfabrication defects of clogged orifices could lessen the load capacity and the dynamic coefficients of the hybrid thrust bearing. The model developed in this paper can serve as a useful tool to provide insight into micro hybrid gas thrust bearing-rotor systems.

References

References
1.
Epstein
,
A. H.
, and
Senturia
,
S. D.
,
1997
, “
Macro Power From Micro Machinery
,”
Science
,
276
(
5316
), p.
1211
.10.1126/science.276.5316.1211
2.
Jacobson
,
S. A.
, and
Epstein
,
A. H.
,
2003
, “
An Informal Survey of Power MEMS
,”
Int. Sympos. Micro Mech. Eng.
,
12
, pp.
513
519
.
3.
Epstein
,
A. H.
,
2004
, “
Millimeter-Scale, Micro-Electro-Mechanical Systems Gas Turbine Engines
,”
ASME J. Eng. Gas Turb. Power
,
126
(
2
), pp.
205
226
.10.1115/1.1739245
4.
Lee
,
C. G.
, and
Fréchette
,
L. G.
,
2011
, “
A Silicon Microturbopump for a Rankine-Cycle Power Generation Microsystem—Part I: Component and System Design
,”
J. Microelectromech. Syst.
,
20
(
1
), pp.
312
325
.10.1109/JMEMS.2010.2093561
5.
Lee
,
C. G.
,
Liamini
,
M.
, and
Fréchette
,
L. G.
,
2011
, “
A Silicon Microturbopump for a Rankine-Cycle Power Generation Microsystem—Part II: Fabrication and Characterization
,”
J. Microelectromech. Syst.
,
20
(
1
), pp.
326
338
.10.1109/JMEMS.2010.2093562
6.
Mushi
,
S. E.
,
Lin
,
Z. L.
, and
Allaire
,
P. E.
,
2012
, “
Design, Construction, and Modeling of a Flexible Rotor Active Magnetic Bearing Test Rig
,”
IEEE/ASME Trans. Mechatronics
,
17
(
6
), pp.
32
43
.10.1109/TMECH.2011.2160456
7.
Fang
,
J. C.
,
Zheng
,
S. Q.
, and
Han
,
B. C.
,
2013
, “
AMB Vibration Control for Structural Resonance of Double-Gimbal Control Moment Gyro With High-Speed Magnetically Suspended Rotor
,”
IEEE/ASME Trans. Mechatronics
,
18
(
1
), pp.
632
639
.10.1109/TMECH.2011.2161877
8.
Teo
,
C. J.
, and
Spakovszky
,
Z. S.
,
2006
, “
Modeling and Experimental Investigation of Micro-Hydrostatic Gas Thrust Bearings for Micro-Turbomachines
,”
ASME J. Turbomach.
,
128
(
4
), pp.
597
605
.10.1115/1.2219760
9.
Zhang
,
Q. D.
, and
Shan
,
X. C.
,
2008
, “
Micro Air Bearing for a Microturbine
,”
IEEE Sens. J.
,
8
(
5
), pp.
435
440
.10.1109/JSEN.2008.918169
10.
Shan
,
X. C.
, and
Zhang
,
Q. D.
,
2008
, “
Dynamic Characteristics of Micro Air Bearings for Microsystems
,”
Microsyst. Technol.
,
14
(
2
), pp.
229
234
.
11.
Wong
,
C. W.
,
Zhang
,
X.
,
Jacobson
,
S. A.
, and
Epstein
,
A. H.
,
2004
, “
A Self-Acting Gas Thrust Bearing for High-Speed Microrotors
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
158
164
.10.1109/JMEMS.2004.824900
12.
Liu
,
R.
, and
Wang
,
X. L.
,
2010
, “
Numerical Predication of the Performance of Micro Gas Lubricated Spiral Groove Thrust Bearing
,”
Chinese J. Mech. Eng.
,
46
(
21
), pp.
113
117
.10.3901/JME.2010.21.113
13.
Lee
,
D.
, and
Kim
,
D.
,
2011
, “
Design and Performance Prediction of Hybrid Air Foil Thrust Bearings
,”
ASME J. Eng. Gas Turb. Power
,
133
(
4
), p.
042501
.10.1115/1.4002249
14.
Rowe
,
W. B.
,
1989
, “
Advances in Hydrostatic and Hybrid Bearing Technology
,”
Proc. IMechE C: J. Mech. Eng. Sci.
,
203
, pp.
225
242
.10.1243/PIME_PROC_1989_203_110_02
15.
Rowe
,
W. B.
,
Xu
,
S. X.
,
Chong
,
F. S.
, and
Weston
,
W.
,
1982
, “
Hybrid Journal Bearing
,”
Tribol. Int.
,
15
(
6
), pp.
339
348
.10.1016/0301-679X(82)90143-8
16.
Ren
,
L.
,
Zhu
,
K. Q.
, and
Wang
,
X. L.
,
2004
, “
Effects of the Slip Velocity Boundary Condition on the Characteristics of Microbearings
,”
J. Micromech. Microeng.
,
14
(
1
), pp.
116
124
.10.1088/0960-1317/14/1/016
17.
Chan
,
W. K.
, and
Sun
,
Y. H.
,
2003
, “
Analytical Modeling of Ultra-Thin-Film Bearings
,”
J. Micromech. Microeng.
,
13
(
3
), pp.
463
473
.10.1088/0960-1317/13/3/317
18.
Maureau
,
J.
,
Sharatchandra
,
M. C.
,
Sen
,
M.
, and
Gad-el-Hak
,
M.
,
1997
, “
Flow and Load Characteristics of Micro Bearings With Slip
,”
J. Micromech. Microeng.
,
7
, pp.
55
64
.10.1088/0960-1317/7/2/003
19.
Teo
,
C. J.
, and
Spakovszky
,
Z. S.
,
2006
, “
Analysis of Tilting Effects and Geometric Nonuniformities in Micro-Hydrostatic Gas Thrust Bearings
,”
ASME J. Turbomach.
,
128
(
6
), pp.
606
615
.10.1115/1.2219761
20.
Fukui
,
S.
, and
Kaneko
,
R.
,
1988
, “
Analysis of Ultra-Thin Gas Film Lubrication Based on Linearized Boltzman Equation: First Report-Derivation of Generalized Lubrication Equation Including Thermal Creep Flow
,”
ASME J. Tribol.
,
110
, pp.
253
262
.10.1115/1.3261594
21.
Lee
,
Y. B.
,
Kwak
,
H. D.
,
Kim
,
C. H.
, and
Lee
,
N. S.
,
2004
, “
Numerical Prediction of Slip Flow Effect on Gas-Lubricated Journal Bearings for MEMS/MST-Based Micro-Rotating Machinery
,”
Tribol. Int.
,
38
, pp.
89
96
.10.1016/j.triboint.2004.01.003
22.
Miller
,
B. A.
, and
Green
, I
.
,
2001
, “
Numerical Formulation for the Dynamic Analysis of Spiral-Grooved Gas Face Seals
,”
ASME J. Tribol.
,
123
(
2
), pp.
395
403
.10.1115/1.1308015
23.
Zhang
,
J. W.
,
Zhang
,
J. A.
, and
Liu
,
B.
,
2002
, “
Numerical Analysis of Static Pressure Thrust Air Bearings
,”
J. Xi'an Inst. Tech.
,
22
, pp.
6
10
.
24.
Liu
,
Y. C.
,
Shen
,
X. M.
, and
Xu
,
W. F.
,
2002
, “
Numerical Analysis of Dynamic Coefficients for Gas Film Face Seals
,”
ASME J. Tribol.
,
124
(
4
), pp.
743
754
.10.1115/1.1472459
25.
Malanoski
,
S. B.
, and
Pan
,
C. H. T.
,
1965
, “
The Static and Dynamic Characteristics of the Spiral Grooved Thrust Bearing
,”
ASME J. Basic Eng.
,
87
, pp.
547
558
.10.1115/1.3650603
You do not currently have access to this content.