Gas bearings in power generation microturbomachinery (MTM) and for automotive turbocharger applications must demonstrate adequate thermal management without performance degradation while operating in a harsh environment. The paper presents rotor surface temperatures and rotordynamic measurements of a rigid rotor supported on a pair of metal mesh foil bearings (MMFBs) (L = 38.1 mm, D = 36.6 mm). In the tests, to a maximum rotor speed of 50 krpm, an electric cartridge heats the hollow rotor over several hours while a steady inlet air flow rate at ∼160 L/min cools the bearings. In the tests with the heater set to a high temperature (max. 200 °C), the rotor and bearing OD temperatures increase by 70 °C and 25 °C, respectively. Most rotor dynamic responses do not show a marked difference for operation under cold (ambient temperature) or hot rotor conditions. A linear rotordynamics structural model with predicted MMFB force coefficients delivers rotor response amplitudes in agreement with the measured ones for operation with the rotor at ambient temperature. There are marked differences in the peak amplitudes when the rotor crosses its (rigid body) critical speeds. The test bearings provide lesser damping than predictions otherwise indicate. Waterfalls of rotor motion show no sub synchronous whirl frequency motions; the rotor-bearing system being stable for all operating conditions. The measurements demonstrate that MMFBs can survive operation with severe thermal gradients, radial and axial, and with little rotordynamic performance changes when the rotor is either cold or hot. The experimental results, accompanied by acceptable predictions of the bearings dynamic forced performance, promote further MMFBs as an inexpensive reliable technology for MTM.

References

References
1.
Preciado, J., 2012
, “
Short-Term Energy Outlook
,” U.S. Energy Information Administration Report (January 10).
2.
Agrawal
,
G. L.
,
Buckley
,
C. W.
, and
Shakil
,
A.
,
2012
, “
Foil Gas Bearing Supported High Temperature Centrifugal Blower and Method for Cooling Thereof
,” U.S. Patent No. 8,215,928 B2.
3.
Schiffmann
,
J.
, and
Favrat
,
D.
,
2009
, “
Experimental Investigation of a Direct Driven Radial Compressor for Domestic Heat Pumps
,”
Int. J. Refrig.
,
32
, pp.
1918
1928
.10.1016/j.ijrefrig.2009.07.006
4.
San Andrés
,
L.
, and
Chirathadam
,
T. A.
,
2011
, “
Metal Mesh Foil Bearing: Effect of Motion Amplitude, Rotor Speed, Static Load, and Excitation Frequency on Force Coefficients
,”
ASME J. Eng. Gas Turbines Power
,
133
(
12
), p.
122503
.10.1115/1.4004112
5.
DellaCorte
,
C.
,
Radil
,
K. C.
,
Bruckner
,
R. J.
, and
Howard
,
S. A.
,
2008
, “
Design, Fabrication, and Performance of Open Source Generation I and II Compliant Hydrodynamic Gas Foil Bearings
,”
STE Trib. Trans.
,
51
, pp.
254
264
.10.1080/10402000701772579
6.
Kim
,
T. H.
, and
San Andrés
,
L.
,
2006
, “
Limits for High Speed Operation of Gas Foil Bearings
,”
ASME J. Tribol.
,
128
, pp.
670
673
.10.1115/1.2197851
7.
San Andrés
,
L.
,
Kim
,
T. H.
,
Chirathadam
,
T. A.
, and
Ryu
,
K.
,
2010
, “
Measurements of Drag Torque, Lift-Off Journal Speed and Temperature in a Metal Mesh Foil Bearing
,”
ASME J. Eng. Gas Turbines Power
,
132
(
11
), p.
112503
.10.1115/1.4000863
8.
San Andrés
,
L.
, and
Chirathadam
,
T. A.
,
2011
, “
Identification of Rotordynamic Force Coefficients of a Metal Mesh Foil Bearing Using Impact Load Excitations
,”
ASME J. Eng. Gas Turbines Power
,
133
(
11
), p.
112501
.10.1115/1.4002658
9.
Rivin
,
E.
,
1979
, “
Vibration Isolation of Precision Machinery
,”
S.V. Sound Vib.
,
13
(
8
), pp.
18
23
.
10.
Ertas
,
B. H.
,
Al-Khateeb
,
E. M.
, and
Vance
,
J. M.
,
2003
, “
Rotordynamic Bearing Dampers for Cryogenic Rocket Engine Turbopumps
,”
J. Propul. Power
,
119
(
4
), pp.
674
682
.10.2514/2.6157
11.
Radil
,
K.
,
Howard
,
S.
, and
Dykas
,
B.
,
2002
, “
The Role of Radial Clearance on the Performance of Foil Air Bearings
,”
Tribol. Trans.
,
45
(
4
), pp.
485
490
.10.1080/10402000208982578
12.
Radil
,
K.
, and
Zeszotek
,
M.
,
2004
, “
An Experimental Investigation Into the Temperature Profile of a Compliant Foil Air Bearing
,”
Tribol. Trans.
,
47
(
4
), pp.
470
479
.10.1080/05698190490501995
13.
Dellacorte
,
C.
,
1997
, “
A New Foil Air Bearing Test Rig in Use to 700 °C and 70,000 rpm
,” Paper No. NASA TM 107405.
14.
Dykas
,
B.
, and
Howard
,
S.
,
2004
, “
Journal Design Considerations for Turbomachine Shafts Supported on Foil Air Bearings
,”
Tribol. Trans.
,
47
(
4
), pp.
508
516
.10.1080/05698190490493391
15.
Radil
,
K.
, and
Batcho
,
Z.
,
2011
, “
Air Injection as a Thermal Management Technique for Radial Foil Air Bearings
,”
Tribol. Trans.
,
54
, pp.
666
673
.10.1080/10402004.2011.589964
16.
Lee
,
D.
,
Kim
,
D.
, and
Sadashiva
,
R. P.
,
2011
, “
Transient Thermal Behavior of Preloaded Three-Pad Foil Bearings: Modeling and Experiments
,”
ASME J. Tribol.
,
133
, p.
021703
.10.1115/1.4003561
17.
Kim
,
D.
,
Ki
,
J.
,
Kim
,
Y.
, and
Ahn
,
K.
,
2012
, “
Extended Three-Dimensional Thermo-Hydrodynamic Model of Radial Foil Bearing: Case Studies on Thermal Behaviors and Dynamic Characteristics in Gas Turbine Simulator
,”
ASME J. Eng. Gas Turbines Power
,
134
(5), p.
052501
.10.1115/1.4005215
18.
Kim
,
T. H.
Song
,
J. W.
Lee
,
Y-b.
, and
Sim
,
K.
,
2012
, “
Thermal Performance Measurement of a Bump Type Gas Foil Bearing Floating on a Hollow Shaft for Increasing Rotating Speed and Static Load
,”
ASME J. Eng. Gas Turbines Power
,
134
(2), p.
024501
.10.1115/1.4004401
19.
Shrestha
,
S. K.
,
2012
, “
Experimental Feasibility Study of Radial Injection Cooling of Three-Pad Radial Air Foil Bearings
,” M.S. thesis, The University of Texas At Arlington, Arlington, TX.
20.
San Andrés
,
L.
,
Kim
,
T. H.
, and
Ryu
,
K.
,
2009
, “
Thermohydrodynamic Analysis of Bump Type Gas Foil Bearings: A Model Anchored to Test Data
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
042504
.10.1115/1.3159386
21.
Ryu
,
K.
, and
San Andrés
,
L.
,
2012
, “
Effect of Cooling Flow on the Operation of a Hot Rotor-Gas Foil Bearing System
,”
ASME J. Eng. Gas Turbines Power
,
134
(10), p.
102511
.10.1115/1.4007067
22.
Chirathadam
,
T. A.
,
2012
, “
Metal Mesh Foil Bearings: Prediction and Measurement of Static and Dynamic Performance Characteristics
,” Ph.D thesis, Texas A&M University, College Station, TX.
23.
San Andrés
,
L.
,
Kim
,
T. H.
, and
Ryu
,
K.
,
2011
, “
Thermal Management and Rotordynamic Performance of a Hot Rotor-Gas Foil Bearings System: Part 1— Measurements
,”
ASME J. Eng. Gas Turbines Power
,
133
(6), p.
062501
.10.1115/1.4001826
24.
ISO 1940/1
,
2003
, “
Mechanical Vibration-Balance Quality Requirements for Rotors in a Constant (Solid) State—Part 1: Specifications and Verifications of Balance Tolerances
,” International Organization for Standardization, Geneva, Switzerland.
25.
Ginsberg
,
J. H.
,
2001
,
Mechanical and Structural Vibration—Theory and Application
,
Wiley
,
New York
.
26.
Ryu
,
K.
,
2011
, “
Effect of Cooling Flow on the Operation of a Hot Rotor-Gas Foil Bearing System
,” Ph.D. thesis, Texas A&M University, College Station, TX.
You do not currently have access to this content.