Proven low-cost gas bearing technologies are sought to enable more compact rotating machinery products with extended maintenance intervals. The paper presents an analysis for predicting the static and dynamic forced performance characteristics of metal mesh foil bearings (MMFBs) which comprise a top foil supported on a layer of metal mesh of a certain compactness. The analysis couples a finite element model of the top foil and underspring support with the gas film Reynolds equation. A comparison of the predictions against laboratory measurements with two bearings aims to validate the analysis. The predicted drag friction factor in one bearing (L = D = 28.00 mm) during full film operation is just f ∼ 0.03 at ∼50,000 rpm, in good agreement with measurements at increasing applied loads. The predictions further elucidate the effect of the applied load and rotor speed on the bearing minimum film thickness, journal eccentricity, and attitude angle. For a second bearing (L = 38.0 mm, D = 36.5 mm), predicted bearing force coefficients show magnitudes comparable with the measurements, with less than a 20% difference, in the 250–350 Hz excitation frequency range. While the predicted direct stiffness coefficients are rather constant, the experimental force coefficients increase with frequency (maximum 400 Hz), due mainly to the increasing amplitudes of dynamic force applied to excite the bearing with a set amplitude of motion. The analysis underpredicts the direct damping coefficients at high frequencies (>300 Hz). The cross-coupled stiffness and damping coefficients are typically lower (<40%) than the direct ones. The bearings operated stably at all speeds without any subsynchronous whirl. The reasonable agreement of the predictions with the available test data promote the better design and further development of MMFB supported rotating machinery.

References

References
1.
Wright
,
S. A.
,
Conboy
,
T. M.
, and
Rochau
,
G. E.
,
2011
, “
Overview of Supercritical CO2 Power Cycle Development at Sandia National Laboratories
,”
2011 University Turbine Systems Research Workshop
,
Columbus, Ohio
, October 25–27.
2.
Burr
,
D.
,
2012
, “
Low Cost Cathode Blower
,”
Proceedings of the 11th Annual SECA Workshop
,
Pittsburgh, PA
., July 27–29.
3.
Ahluwalia
,
R. K.
,
Wang
,
X.
,
Kwon
,
J.
,
Rousseau
,
A.
,
Kalinoski
,
J.
,
James
,
B.
, and
Marcinkoski
,
J.
,
2011
, “
Performance and Cost of Automotive Fuel Cell Systems With Ultra-Low Platinum Loadings
,”
J. Power Sources
,
196
, pp.
4619
4630
.10.1016/j.jpowsour.2011.01.059
4.
San Andrés
,
L.
,
Chirathadam
,
T. A.
, and
Kim
,
T. H.
,
2010
, “
Measurement of Structural Stiffness and Damping Coefficients in a Metal Mesh Foil Bearing
,”
ASME J. Eng. Gas Turbines Power
,
132
(
3
), p.
032503
.10.1115/1.3159379
5.
San Andrés
,
L.
and
Chirathadam
,
T. A.
,
2011
, “
Metal Mesh Foil Bearing: Effect of Motion Amplitude, Rotor Speed, Static Load, and Excitation Frequency on Force Coefficients
,”
ASME J. Eng. Gas Turbines Power
,
133
(
12
), p.
122503
.10.1115/1.4004112
6.
Lee
,
Y.-B.
,
Kim
,
C. H.
,
Kim
,
T. H.
, and
Kim
,
T. Y.
,
2012
, “
Effects of Mesh Density on Static Load Performance of Metal Mesh Gas Foil Bearings
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
012502
.10.1115/1.4004142
7.
Kim
,
T. H.
,
Breedlove
,
A. W.
, and
San Andrés
,
L.
,
2009
, “
Characterization of Foil Bearing Structure for Increasing Shaft Temperatures—Part I: Static Load Performance
,”
ASME J. Tribol.
,
131
(
4
), p.
041703
.10.1115/1.3195042
8.
DellaCorte
,
C.
,
Radil
,
K. C.
,
Bruckner
,
R. J.
, and
Howard
,
S.
,
2008
, “
Design, Fabrication, and Performance of Open Source Generation I and II Compliant Hydrodynamic Gas Foil Bearings
,”
Tribol. Trans.
,
51
(
3
), pp.
254
264
.10.1080/10402000701772579
9.
Radil
,
K.
,
Howard
,
S.
, and
Dykas
,
B.
, 2002, “
The Role of Radial Clearance on the Performance of Foil Air Bearings
,”
Tribol. Trans.
,
45
(
4
), pp.
485
490
.10.1080/10402000208982578
10.
DellaCorte
,
C.
, and
Valco
,
M.
,
2000
, “
Load Capacity Estimation of Foil Air Journal Bearing for Oil-Free Turbomachinery Applications
,”
Tribol Trans.
,
43
(
4
). pp.
795
801
.10.1080/10402000008982410
11.
San Andrés
,
L.
and
Chirathadam
,
T. A.
,
2012
, “
Metal Mesh Foil Bearing and a Bump-Type Foil Bearing: Comparison of Performance for Two Similar Size Gas Bearings
,”
ASME J. Eng. Gas Turbines Power
,
134
, p.
102501
.10.1115/1.4007061
12.
Heshmat
,
H.
,
1994
, “
Advancements in the Performance of Aerodynamic Foil Journal Bearings: High Speed and Load Capacity
,”
ASME J. Tribol.
,
116
, pp.
287
295
.10.1115/1.2927211
13.
Conlon
,
M. J.
,
Dadouche
,
A.
,
Dmochowski
,
W. D.
, and
Bédar
,
J.-P.
,
2010
, “
A Comparison of the Steady-State and Dynamic Performance of First- and Second-Generation Foil Bearings
,”
ASME
Paper No. GT2010-23683
.10.1115/GT2010-23683
14.
San Andrés
,
L.
,
Kim
,
T. H.
,
Chirathadam
,
T. A.
, and
Ryu
,
K.
,
2010
, “
Measurements of Drag Torque, Lift-Off Journal Speed and Temperature in a Metal Mesh Foil Bearing
,”
ASME J. Eng. Gas Turbines Power
,
132
(
11
), p.
112503
.10.1115/1.4000863
15.
DellaCorte
,
C.
,
Radil
,
K. C.
,
Bruckner
,
R. J.
, and
Howard
,
S. A.
,
2006
, “
A Preliminary Foil Gas Bearing Performance Map
,”
NASA Report No. TM-2006-214343
.
16.
Radil
,
K. C.
and
DellaCorte
,
C.
,
2009
, “
A Three-Dimensional Foil Bearing Performance Map Applied to Oil-Free Turbomachinery
,”
NASA Report No. APRL-TR-4473
.
17.
Heshmat
,
H.
,
Walowit
,
J. A.
, and
Pinkus
,
O.
,
1983
, “
Analysis of Gas-Lubricated Foil Journal Bearings
,”
ASME J. Lubr. Technol.
,
105
, pp.
647
655
.10.1115/1.3254697
18.
Carpino
,
M.
and
Talmage
,
G.
,
2003
, “
A Fully Coupled Finite Element Formulation for Elastically Supported Foil Journal Bearings
,”
STLE Tribol. Trans.
,
46
, pp.
560
565
.10.1080/10402000308982664
19.
Aksoy
,
S.
,
Coskun
,
M. B.
, and
Aksit
,
M. F.
,
2011
, “
A Fully Coupled 3D Finite Element Analysis for a Bump-Type Compliant Foil Bearing
,”
Proceedings of the ASME/STLE 2011 International Joint Tribology Conference
,
Los Angeles, CA
, October 24–26.
20.
San Andrés
,
L.
and
Kim
,
T. H.
,
2009
, “
Analysis of Gas Foil Bearings Integrating FE Top Foil Models
,”
Tribol. Int.
,
42
, pp.
111
120
.10.1016/j.triboint.2008.05.003
21.
Hamrock
,
B. J.
,
Schmid
,
S. R.
, and
Jacobson
,
B. O.
,
1994
,
Fundamentals of Fluid Film Lubrication
,
McGraw-Hill
,
New York
.
22.
Reddy
,
J. N.
,
1993
,
An Introduction to the Finite Element Method
,
McGraw-Hill
,
Singapore
, pp.
516
520
.
23.
Chirathadam
,
T. A.
,
2012
, “
Metal Mesh Foil Bearings: Prediction and Measurement of Static and Dynamic Performance Characteristics
,”
Ph.D thesis
,
Texas A&M University
,
College Station, TX
.
24.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
,
2007
,
Numerical Recipes in Fortran 77: The Art of Scientific Computing
,
Cambridge University Press
,
New York
.
25.
Faria
,
M.
, and
San Andrés
,
L.
,
2000
, “
On the Numerical Modeling of High Speed Hydrodynamic Gas Bearing
,”
ASME J. Tribol.
,
122
, pp.
124
130
.10.1115/1.555335
26.
Delgado
,
A.
, and
Ertas
,
B.
,
2012
, “
Identification of Damping and Stiffness Coefficients of a Shape Memory Alloy Wire Mesh Damper
,”
Proceedings of the 14th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, ISROMAC-14,
Honolulu, HI
, February 27-March 2.
27.
DellaCorte
,
C.
,
2011
, “
Stiffness and Damping Coefficient Estimation of Compliant Surface Gas Bearings for Oil-Free Turbomachinery
,”
Tribol. Trans.
,
54
(
4
), pp.
674
684
.10.1080/10402004.2011.589966
You do not currently have access to this content.