Models for the analysis of thermoacoustic instabilities are conveniently formulated in the frequency domain. In this case one often faces the difficulty that the response behavior of some elements of the system is only known at real-valued frequencies, although the transfer behavior at complex-valued frequencies is required for the quantification of the growth rates of instabilities. The present paper discusses various methods for extrapolation of frequency response data at real-valued frequencies into the complex plane. Some methods have been used previously in thermoacoustic stability analysis; others are newly proposed. First the pertinent mathematical background is reviewed, then the sensitivity of predicted growth rates on the extrapolation scheme is explored. This is done by applying different methods to a simple thermoacoustic system, i.e., a ducted premixed flame, for which an analytical solution is known. A short analysis determining the region of confidence of the extrapolated transfer function is carried out to link the present study to practical applications. The present study can be seen as a practical guideline for using frequency response data collected for a set of real-valued frequencies in quantitative linear stability analysis.

References

References
1.
Crocco
,
L.
, and
Cheng
,
S.
,
1956
,
Theory of Combustion Instability in Liquid Propellant Rocket Motors
,
Butterworths Scientific Publications
, New York.
2.
Stow
,
S. R.
, and
Dowling
,
A. P.
,
2004
, “
Low-Order Modelling of Thermoacoustic Limit Cycles
,”
ASME Turbo Expo 2004: Power for Land
,
Sea and Air
, Vienna, Austria, June 14–17,
ASME
Paper No. GT2004-54245.10.1115/GT2004-54245
3.
Sattelmayer
,
T.
, and
Polifke
,
W.
,
2003
, “
Assessments of Methods for the Computation of the Linear Stability of Combustors
,”
Combust. Sci. Tech.
,
175
(
3
), pp.
453
476
.10.1080/00102200302382
4.
Sattelmayer
,
T.
, and
Polifke
,
W.
,
2003
, “
A Novel Method for the Computation of the Linear Stability of Combustors
,”
Combust. Sci. Tech.
,
175
(
3
), pp.
477
497
.10.1080/00102200302387
5.
Zhu
,
M.
,
Dowling
,
A.
, and
Bray
,
K.
,
2005
, “
Transfer Function Calculations for Aeroengine Combustion Oscillations
,”
ASME J. Eng. Gas Turb. Power
,
127
(1), pp.
18
26
.10.1115/1.1806451
6.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
A Unified Model for the Prediction of Laminar Flame Transfer Functions: Comparisons Between Conical and V-Flame Dynamics
,”
Combust. Flame
,
134
, pp.
21
34
.10.1016/S0010-2180(03)00042-7
7.
Ducruix
,
S.
,
Durox
,
D.
, and
Candel
,
S.
,
2000
, “
Theoretical and Experimental Determinations of the Flame Transfer Function of a Laminar Premixed Flame
,”
Proc. Combust. Inst.
,
28
, pp.
765
773
.10.1016/S0082-0784(00)80279-9
8.
Tay Wo Chong
,
L.
,
Bomberg
,
S.
,
Ulhaq
,
A.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2012
, “
Comparative Validation Study on Premixed Flame Transfer Function Identification
,”
ASME J. Eng. Gas Turb. Power
,
134
(
2
), p.
021502
.10.1115/1.4004183
9.
Hauser
,
M.
,
Lorenz
,
M.
, and
Sattelmayer
,
T.
,
2011
, “
Influence of Transversal Acoustic Excitation of the Burner Approach Flow on the Flame Structure
,”
ASME J. Eng. Gas Turb. Power
,
133
(
4
), p. 041501.10.1115/1.4002175
10.
Kim
,
K. T.
,
Lee
,
J. G.
,
Lee
,
H. J.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2010
, “
Characterization of Forced Flame Response of Swirl-Stabilized Turbulent Lean-Premixed Flames in a Gas Turbine Combustor
,”
ASME J. Eng. Gas Turb. Power
,
132
(
4
), p. 041502.10.1115/1.3204532
11.
Schuermans
,
B.
,
Guethe
,
F.
, and
Mohr
,
W.
,
2010
, “
Optical Transfer Function Measurements for Technically Premixed Flames
,”
ASME J. Eng. Gas Turb. Power
,
132
(
8
), p. 081501.10.1115/1.3124663
12.
Kathan
,
R.
, and
Sattelmayer
,
T.
,
2011
, “
Experimental Investigation of the Test Case HF-2
,”
Proceedings of the 2nd REST Modelling Workshop
,
Ottobrunn
, Germany, October 5–6, 2010.
13.
Kathan
,
R.
,
Morgenweck
,
D.
,
Kaess
,
R.
, and
Sattelmayer
,
T.
,
2011
, “
Validation of the Computation of Rocket Nozzle Admittances With Linearized Euler Equations
,”
Proceedings of the 4th European Conference for Aerospace Sciences
,
St. Petersburg, Russia
, July 4–8.
14.
Ronneberger
,
D.
,
1972
, “
The Acoustical Impedance of Holes in the Wall of Flow Ducts
,”
J. Sound Vib.
,
24
(
1
), pp.
133
150
.10.1016/0022-460X(72)90129-0
15.
Ronneberger
,
D.
,
1987
, “
Theoretische und experimentelle Untersuchung der Schallausbreitung durch Querschnittssprünge und Lochplatten in Strömungskanälen
,” Tech. rep., Drittes Physikalisches Institut der Universität Göttingen, Göttingen, Germany.
16.
Martínez-Lera
,
P.
,
Schram
,
C.
,
Föller
,
S.
,
Kaess
,
R.
, and
Polifke
,
W.
,
2009
, “
Identification of the Aeroacoustic Response of a Low Mach Number Flow Through a T-Joint
,”
J. Acoust. Soc. Am.
,
126
(
2
), pp.
582
586
.10.1121/1.3159604
17.
Föller
,
S.
, and
Polifke
,
W.
,
2012
, “
Identification of Aero-Acoustic Scattering Matrices From Large Eddy Simulation: Application to a Sudden Area Expansion of a Duct
,”
J. Sound Vib.
,
331
(
13
), pp.
3096
3113
.10.1016/j.jsv.2012.01.004
18.
Ljung
,
L.
,
1999
,
System Identification: Theory for the User
,
2nd ed.
, Prentice-Hall, Upper Saddle River, NJ.
19.
Cuquel
,
A.
,
Durox
,
D.
, and
Schuller
,
T.
,
2011
, “
Experimental Determination of Flame Transfer Function Using Random Velocity Perturbations
,” ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, Vancouver, BC, Canada, June 6–10,
ASME
Paper No. GT2011-45881.10.1115/GT2011-45881
20.
Polifke
,
W.
,
Paschereit
,
C. O.
, and
Sattelmayer
,
T.
,
1997
, “
A Universally Applicable Stability Criterion for Complex Thermo-Acoustic Systems
,” 18, Deutsch-Niederländischer Flammentag, Delft, The Netherlands, August 28–29, (VDI Bericht, Vol. 1313), VDI-Verlag, Düsseldorf, Germany, pp. 455–460.
21.
Kopitz
,
J.
, and
Polifke
,
W.
,
2008
, “
CFD-Based Application of the Nyquist Criterion to Thermo-Acoustic Instabilities
,”
J. Comput. Phys.
,
227
(
14
), pp.
6754
6778
.10.1016/j.jcp.2008.03.022
22.
Kaess
,
R.
,
2010
, “
Thermoacoustic Stability Analysis From Open Loop Transfer Functions Based on LES
,” Ph.D. thesis, Lehrstuhl für Thermodynamik, Technische Universität München, Munich, Germany.
23.
Deuker
,
E.
,
1994
, “
Ein Beitrag zur Vorausberechnung des akustischen Stabilitätsverhaltens von Gasturbinen-Brennkammern mittels theoretischer und experimenteller Analyse von Brennkammerschwingungen
,” Ph.D. thesis, RWTH Aachen, Aachen, Germany.
24.
Keller
,
J. J.
,
1995
, “
Thermoacoustic Oscillations in Combustion Chambers of Gas Turbines
,”
AIAA J.
,
33
(
12
), pp.
2280
2287
.10.2514/3.12980
25.
Dowling
,
A. P.
,
1995
, “
The Calculation of Thermoacoustic Oscillations
,”
J. Sound Vib.
,
180
(
4
), pp.
557
581
.10.1006/jsvi.1995.0100
26.
Polifke
,
W.
,
2004
, “
Combustion Instabilities
,”
Advances in Aeroacoustics and Applications
,
Von Karman Institute, Brussels
,
Belgium
.
27.
Boyer
,
L.
, and
Quinard
,
J.
,
1990
, “
On the Dynamics of Anchored Flames
,”
Combust. Flame
,
82
(
1
), pp.
51
65
.10.1016/0010-2180(90)90077-5
28.
Fleifil
,
M.
,
Annaswamy
,
A. M.
,
Ghoneim
,
Z. A.
, and
Ghoniem
,
A. F.
,
1996
, “
Response of a Laminar Premixed Flame to Flow Oscillations: A Kinematic Model and Thermoacoustic Instability Results
,”
Combust. Flame
,
106
(
4
), pp.
487
510
.10.1016/0010-2180(96)00049-1
29.
Pankiewitz
,
C.
,
2004
, “
Hybrides Berechnungsverfahren für thermoakustische Instabilitäten von Mehrbrennersystemen
,” Ph.D. thesis, Lehrstuhl für Thermodynamik, Technische Universität München, Munich, Germany.
30.
Bellows
,
B. D.
,
Bobba
,
M. K.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T.
,
2007
, “
Nonlinear Flame Transfer Function Characteristics in a Swirl-Stabilized Combustor
,”
ASME J. Eng. Gas Turb. Power
,
129
, pp.
954
961
.10.1115/1.2720545
31.
Lieuwen
,
T.
, and
Neumeier
,
Y.
,
2002
, “
Nonlinear Pressure-Heat Release Transfer Function Measurements in a Premixed Combustor
,”
Proc. Combust. Inst.
,
29
, pp.
99
105
.10.1016/S1540-7489(02)80017-7
32.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2008
, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function
,”
J. Fluid Mech.
,
615
, pp.
139
167
.10.1017/S0022112008003613
33.
Markushevich
,
A.
, and
Silverman
,
R. A.
,
1977
,
Theory of Functions of a Complex Variable
,
2nd ed.
,
American Mathematical Society
,
New York
.
34.
Stein
,
E.
, and
Shakarchi
,
R.
,
2003
,
Complex Analysis
,
Princeton University Press
, Princeton, NJ.
35.
Subramanian
,
P.
,
2012
, private communication.
36.
Blumenthal
,
R. S.
,
Subramanian
,
P.
,
Sujith
,
R.
, and
Polifke
,
W.
,
2013
, “
Novel Perspectives on the Dynamics of Premixed Flames
,”
Combust. Flame
,
160
(
7
), pp. 1215–1224.10.1016/j.combustflame.2013.02.005
37.
Oppenheim
,
A. V.
, and
Schafer
,
R. W.
,
2009
,
Discrete-Time Signal Processing
,
3rd ed.
,
Prentice-Hall Press
,
Upper Saddle River, NJ
.
38.
Johns Hopkins University, Chemical Propulsion Information Agency, 1997,
Guidelines for Combustion Stability Specifications and Verifications Procedures for Liquid Propellant Rocket Engines
, Chemical Propulsion Information Agency, Columbia, MD, CPIA Publication No. 655.
You do not currently have access to this content.