Understanding the effects of inlet velocity and inlet equivalence ratio fluctuations on heat release rate fluctuations in lean premixed gas turbine combustors is essential for predicting combustor instability characteristics. This information is typically obtained from independent velocity-forced and fuel-forced flame transfer function measurements, where the global chemiluminescence intensity is used as a measure of the flame's overall rate of heat release. Current lean premixed combustors operate in a technically premixed mode where the flame is exposed to both velocity and equivalence ratio fluctuations and, as a result, the chemiluminescence intensity does not provide an accurate measure of the flame's rate of heat release. The objective of this work is to experimentally assess the validity of a technique for measuring heat release rate fluctuations in technically premixed flames based on the linear superposition of fuel-forced and velocity-forced flame transfer function measurements. In the absence of a technique for directly measuring heat release rate fluctuations in technically premixed flames, the heat release rate reconstruction is validated indirectly by comparing measured and reconstructed chemiluminescence intensity fluctuations. The results are reported for a range of operating conditions and forcing frequencies which demonstrate the capabilities and limitations of the heat release rate reconstruction technique. A variation of this technique, referred to as a reverse reconstruction, is also proposed, which does not require a measurement of the fuel-forced flame transfer function. The results obtained using the reverse reconstruction technique are presented and compared to the results from the direct reconstruction technique.

References

References
1.
Jones
,
B.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2011
, “
Flame Response Mechanisms Due to Velocity Perturbations in a Lean Premixed Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
133
, pp.
323
333
.10.1115/1.4001996
2.
Kim
,
K. T.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2010
, “
Response of Partially Premixed Flames to Acoustic Velocity and Equivalence Ratio Perturbations
,”
Combust. Flame
,
157
, pp.
1731
1744
.10.1016/j.combustflame.2010.04.006
3.
Bunce
,
N.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2011
, “
Mixture-Forced Flame Transfer Function Measurements and Mechanisms in a Single-Nozzle Combustor at Elevated Pressure
,”
Proceedings of the ASME Turbo Expo
,
Vancouver, Canada
, June 6–10,
ASME
Paper No. GT2011-46744.10.1115/GT2011-46744
4.
Orawannukul
,
P.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2011
, “
Fuel-Forced Flame Response of a Lean-Premixed Flame
,”
Proceedings of the ASME Turbo Expo
,
Vancouver, Canada
, June 6–10,
ASME
Paper No. GT2011-46022.10.1115/GT2011-46022
5.
Ducruix
,
S.
,
Durox
,
D.
, and
Candel
,
S.
,
2000
, “
Theoretical and Experimental Determinations of the Transfer Function of a Laminar Premixed Flame
,”
Proc. Combust. Inst.
,
28
, pp.
765
773
.10.1016/S0082-0784(00)80279-9
6.
Fleifil
,
M.
,
Annaswamy
,
A. M.
,
Ghoneim
,
Z. A.
, and
Ghoniem
,
A. F.
,
1996
, “
Response of a Laminar Premixed Flame to Flow Oscillations: A Kinematic Model and Thermoacoustic Instability Results
,”
Combust. Flame
,
106
, pp.
487
510
.10.1016/0010-2180(96)00049-1
7.
Higgins
,
B.
,
McQuay
,
M. Q.
,
Lacas
,
F.
,
Rolon
,
J. C.
,
Darabiha
,
N.
, and
Candel
,
S.
,
2001
, “
Systematic Measurements of OH Chemiluminescence for Fuel-Lean, High-Pressure, Premixed Laminar Flames
,”
Fuel
,
80
, pp.
67
74
.10.1016/S0016-2361(00)00069-7
8.
Higgins
,
B.
,
McQuay
,
M. Q.
,
Lacas
,
F.
, and
Candel
,
S.
,
2001
, “
An Experimental Study on the Effect of Pressure and Strain Rate on CH Chemiluminescence of Premixed Fuel-Lean Methane/Air Flames
,”
Fuel
,
80
, pp.
1583
1591
.10.1016/S0016-2361(01)00040-0
9.
Najm
,
H. N.
,
Paul
,
P. H.
,
Mueller
,
C. J.
, and
Wyckoff
,
P. S.
,
1998
, “
On the Adequacy of Certain Experimental Observables as Measurements of Flame Burning Rate
,”
Combust. Flame
,
113
, pp.
312
332
.10.1016/S0010-2180(97)00209-5
10.
Samaniego
,
J. M.
,
Egolfopoulos
,
F. N.
, and
Bowman
,
C. T.
,
1995
, “
CO2* Chemiluminescence in Premixed Flames
,”
Combust. Sci. Technol.
,
109
, pp.
183
203
.10.1080/00102209508951901
11.
Kojima
,
J.
,
Ikeda
,
Y.
, and
Nakajima
,
T.
,
2000
, “
Spatially Resolved Measurement of OH*, CH* and C2* Chemiluminescence in the Reaction Zone of Laminar Methane/Air Premixed Flames
,”
Proc. Combust. Inst.
,
28
, pp.
1757
1764
.10.1016/S0082-0784(00)80577-9
12.
Haber
,
L. C.
,
Vandsburger
,
U.
,
Saunders
,
W. R.
, and
Khanna
,
V. K.
,
2000
, “
An Examination of the Relationship Between Chemiluminescent Light Emissions and Heat Release Rate Under Non-Adiabatic Conditions
,”
Proceedings of the IGTI: International Gas Turbine Institute
,
Munich, Germany
, May 8–11, Paper No. 2000-GT-0121.
13.
Hardalupas
,
Y.
, and
Orain
,
M.
,
2004
, “
Local Measurements of the Time-Dependent Heat Release Rate and Equivalence Ratio Using Chemiluminescent Emission From a Flame
,”
Combust. Flame
,
139
, pp.
188
207
.10.1016/j.combustflame.2004.08.003
14.
Lauer
,
M.
, and
Sattelmayer
,
T.
,
2008
, “
Heat Release Calculation in a Turbulent Swirl Flame From Laser and Chemiluminescence Measurements
,”
14th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
, July 7–10.
15.
Guyot
,
D.
, and
Paschereit
,
C. O.
,
2009
, “
Optical Transfer Function Measurements for a Swirl Burner at Atmospheric Pressure
,”
45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
Denver, CO
, August 2–5,
AIAA
Paper No. 2009-5413.10.2514/6.2009-5413
16.
Huber
,
A.
, and
Polifke
,
W.
,
2008
, “
Impact of Fuel Supply Impedance on Combustion Instability of Gas Turbines
,”
Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea and Air
,
Berlin, June 9–13
,
ASME
Paper No. GT2008-51193.10.1115/GT2008-51193
17.
Huber
,
A.
, and
Polifke
,
W.
,
2009
, “
Dynamics of Practical Premixed Flames, Part I: Model Structure and Identification
,”
Int. J. Spray Combust. Dyn.
,
1
(
2
), pp.
199
228
.10.1260/175682709788707431
18.
Huber
,
A.
and
Polifke
,
W.
,
2009
, “
Dynamics of Practical Premixed Flames, Part II: Identification and Interpretation of CFD Data
,”
Int. J. Spray Combust. Dyn.
,
1
(
2
), pp.
229
250
.10.1260/175682709788707440
19.
Kim
,
K. T.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2010
, “
Reconstruction of the Heat Release Response of Partially Premixed Flames
,”
Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea and Air
,
Glasgow, UK
, June 14–18,
ASME
Paper No. GT2010-22245.10.1115/GT2010-22245
20.
Seybert
,
A. F.
and
Ross
,
D. F.
,
1976
, “
Experimental Determination of Acoustic Properties Using a Two-Microphone Random-Excitation Technique
,”
J. Acoust. Soc. Am.
,
61
(
5
), pp.
1362
1370
.10.1121/1.381403
21.
Lee
,
J. G.
,
Gonzalez
,
E.
, and
Santavicca
,
D. A.
,
2005
, “
On the Applicability of Chemiluminescence to the Estimation of Unsteady Heat-Release During Unstable Combustion in Lean Premixed Combustor
,”
AIAA
Paper No. 2005-3575.10.2514/6.2005-3575
You do not currently have access to this content.