Flashback is a key challenge for low NOx premixed combustion of high hydrogen content fuels. Previous work on jet burner configurations has systematically investigated the impact of fuel composition on flashback propensity, and noted that burner tip temperature played an important role on flashback, yet did not quantify any specific effect (Shaffer, B., Duan, Z., and McDonell, V., 2013, “Study of Fuel Composition Effects on Flashback Using a Confined Jet Flame Burner,” ASME J. Eng. Gas Turb. Power, 135(1), p. 011502). The present work further investigates the coupling of flashback with burner tip temperature and leads to models for flashback propensity as a function of parameters studied. To achieve this, a jet burner configuration with interchangeable burner materials was developed along with automated flashback detection and rim temperature monitoring. An inline heater provides preheated air up to 810 K. Key observations include that for a given condition, tip temperature of a quartz burner at flashback is higher than that of a stainless burner. As a result, the flashback propensity of a quartz tube is about double of that of a stainless tube. A polynomial model based on analysis of variance is presented and shows that, if the tip temperature is introduced as a parameter, better correlations result. A physical model is developed and illustrates that the critical velocity gradient is proportional to the laminar flame speed computed using the measured tip temperature. The addition of multiple parameters further refined the prediction of the flashback propensity, and the effects of materials are discussed qualitatively using a simple heat transfer analysis.

References

References
1.
Lieuwen
,
T.
,
McDonell
,
V.
,
Santavicca
,
D.
, and
Sattelmayer
,
T.
,
2008
, “
Burner Development and Operability Issues Associated With Steady Flowing Syngas Fired Combustors
,”
Combust. Sci. Technol.
,
180
(
6
), pp.
1169
1192
.10.1080/00102200801963375
2.
Lewis
,
B.
, and
von Elbe
,
G.
,
1943
, “
Stability and Structure of Burner Flames
,”
J. Chem. Phys.
,
11
(
2
), pp. p.
75
97
.10.1063/1.1723808
3.
von Elbe
,
G.
, and
Mentser
,
M.
,
1945
, “
Further Studies of the Structure and Stability of Burner Flames
,”
J. Chem. Phys.
,
13
(
2
), pp.
89
100
.10.1063/1.1724004
4.
Wohl
,
K.
,
1953
, “
Quenching, Flash-Back
,
Blow-off-Theory And Experiment,”
Symposium (International) on Combustion
,
4
(
1
), pp.
68
89
10.1016/S0082-0784(53)80011-1.
5.
Putnam
,
A. A.
, and
Jensen
,
R. A.
,
1949
, “
Application of Dimensionless Numbers to Flash-Back and Other Combustion Phenomena
,”
Symposium on Combustion and Flame, and Explosion Phenomena
,
3
(
1
), pp.
89
98
.10.1016/S1062-2896(49)80011-0
6.
Grumer
,
J.
,
1949
, “
Predicting Burner Performance With Interchanged Fuel Gases
,”
Ind. Eng. Chem.
,
41
(
12
), pp.
2756
2761
.10.1021/ie50480a023
7.
Grumer
,
J.
, and
Harris
,
M. E.
,
1952
, “
Flame-Stability Limits of Methane, Hydrogen, and Carbon Monoxide Mixtures
,”
Ind. Eng. Chem.
,
44
(
7
), pp.
1547
1553
.10.1021/ie50511a023
8.
Grumer
,
J. M.
,
Harris
,
E.
, and
Schultz
,
H.
,
1952
, “
Predicting Interchangeability of Fuel Gases. Interchangeability of Oil Gases or Propane-Air Fuels With Natural Gases
,”
Ind. Eng. Chem.
,
44
(
7
), pp.
1554
1559
.10.1021/ie50511a024
9.
Grumer
,
J.
, and
Harris
,
M. E.
,
1954
, “
Temperature Dependence of Stability Limits of Burner Flames
,”
Ind. Eng. Chem.
,
46
(
11
), pp.
2424
2430
.10.1021/ie50539a057
10.
Grumer
,
J. M.
,
Harris
,
E.
, and
Schultz
,
H.
1955
, “
Flame- Stability Limits of Ethylene, Propane, Methane, Hydrogen, and Nitrogen Mixtures
,”
Ind. Eng. Chem.
,
47
(
9
), pp.
1760
1767
.10.1021/ie50549a024
11.
Grumer
,
J. M.
,
Harris
,
E.
, and
Rowe
,
V.
,
1956
,
Fundamental Flashback, Blow Off, and Yellow-Tip Limits of Fuel Gas-Air Mixtures
,
United States Department of the Interior
, ed.,
Bureau of Mines
,
Washington, DC
.
12.
Van Krevelen
,
D. W.
, and
Chermin
,
H. A. G.
,
1958
, “
Generalized Flame Stability Diagram For The Prediction of Interchangeability of Gases
,”
Symposium (International) on Combustion
,
7
(
1
), pp.
358
368
.10.1016/S0082-0784(58)80066-1
13.
Caffo
,
E.
, and
Padovani
,
C.
,
1963
, “
Flashback in Premixed Air Flames
,”
Combust. Flame
,
7
(
4
), pp.
331
337
.10.1016/0010-2180(63)90208-6
14.
Putnam
,
A. A. D.
,
Ball
,
A.
, and
Levy
,
A.
,
1980
, “
Effect of Fuel Composition On Relation of Burning Velocity To Product of Quenching Distance And Flashback Velocity Gradient
,”
Combust. Flame
,
37
, pp.
193
196
.10.1016/0010-2180(80)90085-1
15.
Ball
,
D. A.
,
Putnam
,
A. A.
,
Radhakrishman
,
E.
, and
Levy
,
A.
,
1978
, “
Relation of Burning Velocity, Quenching Distance, and Flashback Velocity Gradient for Low and Intermediate BTU Gases
,” Battelle Columbus Laboratories, Columbus, OH.
16.
Yamazaki
,
K.
, and
Tsuji
,
H.
,
1961
, “
An Experimental Investigation On The Stability Of Turbulent Burner Flames
,”
Symposium (International) on Combustion
,
8
(
1
), pp.
543
553
.10.1016/S0082-0784(06)80545-X
17.
Fine
,
B.
,
1957
, “
Stability Limits And Burning Velocities For Some Laminar And Turbulent Propane And Hydrogen Flames At Reduced Pressure
,” NACA – Technical Note, (4031): 49.
18.
Fine
,
B.
,
1958
, “
Flashback of Laminar and Turbulent Burner Flames at Reduced Pressure
,”
Combust. Flame
,
2
(
3
), pp.
253
266
.10.1016/0010-2180(58)90046-4
19.
Fine
,
B.
,
1959
, “
Effect of Initial Temperature on Flash Back of Laminar and Turbulent Burner Flames
,”
Ind. Eng. Chem.
,
51
(
4
), pp.
564
566
.10.1021/ie50592a044
20.
Dugger
,
G. L.
,
1955
, “
Flame Stability of Preheated Propane-Air Mixtures
,”
Ind. Eng. Chem.
,
47
(
1
), pp.
109
114
.10.1021/ie50541a038
21.
Khitrin
,
L. N.
,
Moin
,
P. B.
,
Smirnov
,
D. B.
, and
Shevchuk
,
V. U.
,
1965
, “
Peculiarities of Laminar- and Turbulent-Flame Flashbacks
,”
Symposium (International) on Combustion
,
10
(
1
), pp.
1285
1291
.10.1016/S0082-0784(65)80263-6
22.
Bollinger
,
L. E.
, and
Edse
,
R.
,
1956
, “
Effect of Burner-Tip Temperature on Flash Back of Turbulent Hydrogen-Oxygen Flames
,”
Ind. Eng. Chem.
,
48
(
4
), pp.
802
807
.10.1021/ie50556a040
23.
Kedia
,
K. S.
, and
Ghoniem
,
A. F.
,
2012
, “
Mechanisms of Stabilization and Blowoff of a Premixed Flame Downstream of a Heat-Conducting Perforated Plate
,”
Combust. Flame
,
159
(
3
), pp.
1055
1069
.10.1016/j.combustflame.2011.10.014
24.
Shaffer
,
B.
,
Duan
,
Z.
, and
McDonell
,
V.
,
2013
, “
Study of Fuel Composition Effects on Flashback Using a Confined Jet Flame Burner
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
011502
.10.1115/1.4007345
25.
Eichler
,
C.
, and
Sattelmayer
,
T.
,
2011
, “
Experiments on Flame Flashback in a Quasi-2D Turbulent Wall Boundary Layer for Premixed Methane-Hydrogen-Air Mixtures
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
011503
.10.1115/1.4001985
26.
Eichler
,
C.
,
Baumgartner
,
G.
, and
Sattelmayer
,
T.
,
2012
, “
Experimental Investigation of Turbulent Boundary Layer Flashback Limits for Premixed Hydrogen-Air Flames Confined in Ducts
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
011502
.10.1115/1.4004149
27.
Lee
,
S. T.
, and
Tien
,
J. S.
,
1982
, “
A Numerical-Analysis of Flame Flashback in a Premixed Laminar System
,”
Combust. Flame
,
48
(
3
), pp.
273
285
.10.1016/0010-2180(82)90134-1
28.
Kurdyumov
,
V. N.
,
Fernández
,
E.
, and
Liñán
,
A.
,
2000
, “
Flame Flashback and Propagation of Premixed Flames Near a Wall
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1883
1889
.10.1016/S0082-0784(00)80592-5
29.
Kurdyumov
,
V. N.
,
Truffaut
,
J. M.
,
Quinard
,
J.
,
Wangher
,
A.
, and
Searby
,
G.
,
2008
, “
Oscillations of Premixed Flames in Tubes Near the Flashback Conditions
,”
Combust. Sci. Technol.
,
180
(
5
), pp.
731
742
.10.1080/00102200801893689
30.
Kurdyumov
,
V.
,
Fernández-Tarrazo
,
E.
,
Truffaut
,
J. M.
,
Quinard
,
J.
,
Wangher
,
A.
, and
Searby
,
G.
,
2007
, “
Experimental and Numerical Study of Premixed Flame Flashback
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1275
1282
.10.1016/j.proci.2006.07.100
31.
Schlichting
,
H.
, and
Gersten
,
K.
,
2004
,
Boundary-Layer Theory
,
Springer
,
New York
.
32.
Turns
,
S. R.
,
1996
,
An Introduction to Combustion: Concepts and Applications
,
McGraw-Hill, Inc.
,
New York
.
33.
Kee
,
R. J.
,
Smooke
,
M. D.
, and
Miller
,
J. A.
,
1985
, “
A FORTRAN Program for Modeling Steady Laminar One-Dimensional Premixed Flames
,” Sandia National Laboratories, Livermore, CA, Report No. SAND85-8240.
34.
Smith
,
G. P.
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
, Jr.,
W. C.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, 2013, “GRI-Mech Home Page,” University of California-Berkeley, Berkeley, CA, available from
http://
www.me.berkeley.edu/gri_mech/
35.
Glassman
,
I.
, and
Yetter
,
R. A.
,
2008
,
Combustion
Elsevier
,
London
.
36.
Barnett
,
H. C.
, and
Hibbard
,
R. R.
,
1957
,
Basic Considerations in the Combustion of Hydrocarbon Fuels With Air
,
National Advisory Committee for Aeronautics
,
Washington, DC
.
37.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
,
5th ed.
,
John Wiley & Sons
,
New York
.
38.
Duan
,
Z.
,
Baumgartner
,
G.
,
Shaffer
,
B.
,
McDonell
,
V.
, and
Sattelmayer
,
T.
,
2013
, “Influence of Burner Material, Tip Temperature And Geometrical Flame Configuration on Flashback Propensity of H2-Air Jet Flames,” ASME Turbo Expo 2013, San Antonio, TX, June 3-7, ASME Paper No. GT2013-94823.
You do not currently have access to this content.