Rifled fillisters were milled on cannular frustums to modulate flow behavior and to increase the turbulence intensity (TI). The TI and combustion intensity were compared in four configurations of frustums—unrifled, inner-rifled, outer-rifled, and two-faced rifled. The flame patterns and flame lengths were observed and measured by direct-color photography. The temperature profiles and (total) combustion intensity were detected and calculated with an R-type thermocouple. Three flame patterns (jet, flickering, and lifted flames) were defined behind the pure-jet nozzle. Four flame patterns (jet, flickering, bubble, and turbulent flames) were observed behind the unrifled frustum. The bluff-body frustum changes the lifted flame to turbulent flame due to a high T.I at high central-fuel velocity (uc). The experimental data showed that the grooved rifles improved the air-propane mixing, which then improved the combustion intensity. The rifled mechanism intensified the swirling effect and then the flame-temperature profiles were more uniform than those behind the pure-jet nozzle. The increased TI also resulted in the shortest flame length behind the two-faced rifled frustum and increased the total combustion intensity.

References

References
1.
Chaudhuri
,
S.
,
Kostka
,
S.
,
Renfro
,
M. W.
, and
Cetegen
,
B. M.
,
2010
, “
Blowoff Dynamics of Bluff Body Stabilized Turbulent Premixed Flames
,”
Combust. Flame
,
157
(
4
), pp.
790
802
.10.1016/j.combustflame.2009.10.020
2.
Barlow
,
R. B.
,
Dunn
,
M. J.
,
Sweeney
,
M. S.
, and
Hochgreb
,
S.
,
2012
, “
Effects of Preferential Transport in Turbulent Bluff-Body-Stabilized Lean Premixed CH4/Air Flames
,”
Combust. Flame
,
159
(
8
), pp.
2563
2575
.10.1016/j.combustflame.2011.11.013
3.
Chaparro
,
A.
,
Landry
,
E.
, and
Cetegen
,
B. M.
,
2006
, “
Transfer Function Characteristics of Bluff-Body Stabilized, Conical V-Shaped Premixed Turbulent Propane-Air Flames
,”
Combust. Flame
,
145
(
1-2
), pp.
290
299
.10.1016/j.combustflame.2005.10.013
4.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
,
1990
,
Fundamentals of Fluid Mechanics
,
2nd ed.
,
John Wiley and Sons
,
New York
, pp.
413
416
.
5.
Rose
,
W. G.
,
1962
, “
A Swirling Round Turbulent Jet 1-Mean-Flow Measurements
,”
ASME J. Appl. Mech.
,
29
(
4
), pp.
615
625
.10.1115/1.3640644
6.
Chigier
,
N. A.
and
Beer
,
J. M.
,
1964
, “
Velocity and Static Pressure Distributions in Swirling Air Jets Issuing From Annular and Divergent Nozzles
,”
ASME J. Basic Eng.
,
86
(
4
), pp.
788
798
.10.1115/1.3655954
7.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flow
,
Abacus
,
Cambridge, UK
, pp.
1
293
.
8.
Huang
,
R. F.
and
Tsai
,
F. C.
,
2001
, “
Observations of Swirling Flows Behind Circular Discs
,”
AIAA J.
,
39
(
6
), pp.
1106
1112
.10.2514/2.1423
9.
Huang
,
R. F.
and
Yen
,
S. C.
,
2003
, “
Axisymmetric Swirling Vortical Wakes Modulated by a Control Disc
,”
AIAA J.
,
41
(
5
), pp.
888
896
.10.2514/2.2024
10.
Zhen
,
H. S.
,
Cheung
,
C. S.
,
Leung
,
C. W.
, and
Li
,
H. B.
,
2013
, “
Thermal and Heat Transfer Behaviors of an Inverse Diffusion Flame With Induced Swirl
,”
Fuel
,
103
, pp.
212
219
.10.1016/j.fuel.2012.05.026
11.
Weigand
,
P.
,
Meier
,
W.
,
Duan
,
X. R.
,
Stricker
,
W.
, and
Aigner
,
M.
,
2006
, “
Investigations of Swirl Flames in a Gas Turbine Model Combustor I. Flow Field, Structures, Temperature, and Species Distributions
,”
Combust. Flame
,
144
(
1-2
), pp.
205
224
.10.1016/j.combustflame.2005.07.010
12.
Xiouris
,
C.
and
Koutmos
,
P.
,
2011
, “
An Experimental Investigation of the Interaction of Swirl Flow With Partially Premixed Disk Stabilized Propane Flames
,”
Exp. Therm. Fluid Sci.
,
35
(
6
), pp.
1055
1066
.10.1016/j.expthermflusci.2011.02.008
13.
San
,
K. C.
and
Hsu
,
H. J.
,
2009
, “
Characteristics of Flow and Flame Behavior Behind Rifled/Unrifled Nozzles
,”
ASME J. Gas Turbines Power
,
131
(
5
), p.
051501
.10.1115/1.3078388
14.
San
,
K. C.
and
Lee
,
Y. K.
,
2012
, “
Flame Structures and Combustion Intensity of Tai-Chi Swirl Generator
,”
Combust. Sci. Technol.
,
184
(
6
), pp.
791
810
.10.1080/00102202.2012.669801
15.
Huang
,
R. F.
and
Yen
,
S. C.
,
2008
, “
Aerodynamic Characteristics and Thermal Structure of Nonpremixed Reacting Swirling Wakes at Low Reynolds Numbers
Combust. Flame
,
155
(
4
), pp.
539
556
.10.1016/j.combustflame.2008.01.001
16.
Yen
,
S. C.
,
2003
, “
Flow Control and Flame Manipulation of Swirling Jets Using a Dual-Disc Blockage Configuration
,” Ph.D. dissertation, National Taiwan University of Science and Technology, Taipei.
17.
Cengel
,
Y. A.
and
Boles
,
M. A.
,
1998
,
Thermodynamics: An Engineering Approach
,
McGraw-Hill
,
New York
, p.
901
.
18.
Manikantachari
,
K. R. V.
,
Raghavan
,
V.
, and
Srinivasan
,
K.
,
2011
, “
Natural Flickering of Methane Diffusion Flames
,”
World Acad. Sci. Eng. Technol.
,
59
, pp.
376
381
.
19.
Darabkhani
,
H. G.
and
Zhang
,
Y.
,
2010
, “
Stabilisation Mechanism of a Flickering Methane Diffusion Flame With Co-Flow of Air
,”
Eng. Lett.
,
18
(
4
), pp.
369
375
.
20.
San
,
K. C.
,
Huang
,
Y. Z.
, and
Yen
,
S. C.
,
2013
, “
Cold-Flow Patterns and Mixing Index Behind/Near Rifled Bluff-Body Frustums
,”
J. Visualization
,
16
(3), pp.
229
246
.10.1007/s12650-013-0168-z
You do not currently have access to this content.