The paper presents a one-dimensional approach to assess the reduction potential of NOx emissions for lean premixed gas turbine combustion systems. NOx emissions from these systems are known to be mainly caused by high temperatures, not only from an averaged perspective but especially related to poor mixing quality of fuel and air. The method separates the NOx chemistry in the flame front zone and the postflame zone (slow reaction). A one-dimensional treatment enables the use of detailed chemistry. A lookup table parameterized by reaction progress and equivalence ratio is used to improve the computational efficiency. The influence of mixing quality is taken into account by a probability density function of the fuel element–based equivalence ratio, which itself translates into a temperature distribution. Hence, the NOx source terms are a function of reaction progress and equivalence ratio. The reaction progress is considered by means of the two-zone approach. Based on unsteady computational fluid dynamics (CFD) data, the evolution of the probability density function with residence time has been analyzed. Two types of definitions of an unmixedness quantity are considered. One definition accounts for spatial as well as temporal fluctuations, and the other is based on the mean spatial distribution. They are determined at the location of the flame front. The paper presents a comparison of the modeled results with experimental data. A validation and application have shown very good quantitative and qualitative agreement with the measurements. The comparison of the unmixedness definitions has proven the necessity of unsteady simulations. A general emissions-unmixedness correlation can be derived for a given combustion system.

References

References
1.
Leonard
,
G.
, and
Correa
,
S.
,
1990
, “
NOx, Formation in Premixed High-Pressure Lean Methane Flames
”,
2nd ASME Fossil Fuel Combustion Symposium, Vol. 30, ASME/PD
,
New York
, pp.
69
74
.
2.
Steele
,
R.
,
Jarrett
,
A.
,
Malte
,
P. C.
,
Tonouchi
,
J. H.
, and
Nicol
,
D. G.
,
1997
, “
Variables Affecting NOx Formation in Lean-Premixed Combustion
,”
ASME J. Eng. Gas Turbines Power
,
119
(
1
), pp.
102
107
.10.1115/1.2815532
3.
Lyons
,
V. J.
,
1981
, “
Fuel/Air Nonuniformity-Effect on Nitric Oxide Emissions
,”
AIAA J.
,
20
(
5
), pp.
660
665
.10.2514/3.51124
4.
Pompei
,
F.
, and
Heywood
,
J. B.
,
1972
, “
The Role of Mixing in Burner-Generated Carbon Monoxide and Nitric Oxide
,”
Combust. Flame
,
19
, pp.
407
418
.10.1016/0010-2180(72)90010-7
5.
Zeldovich
,
Y. B.
,
1946
, “
The Oxidation of Nitrogen in Combustion and Explosions
,”
Acta Physicochim. URSS
,
21
, pp.
557
560
.
6.
Malte
,
P. C.
, and
Pratt
,
D. T.
,
1974
, “
Measurement of Atomic Oxygen and Nitrogen Oxides in Jet-Stirred Combustion
,”
Proc. Combust. Inst.
,
15
, pp.
1061
1070
.10.1016/S0082-0784(75)80371-7
7.
Leonard
,
G.
, and
Stegmaier
,
J.
,
1994
, “
Development of an Aeroderivative Gas Turbine Dry Low Emissions Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
116
, pp.
542
546
.10.1115/1.2906853
8.
Fric
,
T. F.
,
1993
, “
Effects of Fuel-Air Unpremixedness on NOx Emissions
,”
J. Propul. Power
,
9
, p.
708
.10.2514/3.23679
9.
Biagioli
,
F.
, and
Güthe
,
F.
,
2007
, “
Effect of Pressure and Fuel-Air Unmixedness on NOx Emissions From Industrial Gas Turbine Burners
,”
Combust. Flame
,
151
, pp.
274
288
.10.1016/j.combustflame.2007.04.007
10.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
2nd ed.
,
Edwards
,
Ann Arbor, MI
.
11.
Di Domenico
,
M.
,
Gerlinger
,
P.
, and
Noll
,
B.
,
2011
, “
Numerical Simulations of Confined, Turbulent, Lean, Premixed Flames Using a Detailed Chemistry Combustion Model
,”
Proceedings of ASME Turbo Expo 2011
,
Vancouver, BC
, Canada, June 6–10,
ASME
Paper No. GT2011-45520.10.1115/GT2011-45520
12.
Oijen
,
J.
,
Lammers
,
F.
, and
De Goey
,
L.
,
2001
, “
Modeling of Complex Premixed Burner Systems by Using Flamelet-Generated Manifolds
,”
Combust. Flame
,
127
(
3
), pp.
2124
2134
.10.1016/S0010-2180(01)00316-9
13.
Ketelheun
,
A.
,
Olbricht
,
C.
,
Hahn
,
F.
, and
Janicka
,
J.
,
2010
, “
NO Prediction in Turbulent Flames Using LES/FGM With Additional Transport Equations
,”
Proc. Combust. Inst.
,
33
, pp.
2975
2982
.10.1016/j.proci.2010.07.021
14.
Gicquel
,
O.
,
Darabiha
,
N.
, and
Thevenin
,
D.
,
2000
, “
Laminar Premixed Hydrogen/Air Counterflow Flame Simulations Using Flame Prolongation of ILDM With Differential Diffusion
,”
Proc. Combust. Inst.
,
28
, pp.
1901
1908
.10.1016/S0082-0784(00)80594-9
15.
Fiorina
,
B.
,
Gicquel
,
O.
,
Vervisch
,
L.
,
Darabiha
,
N.
,
Carpentier
,
S.
, and
Darabiha
,
N.
,
2005
, “
Approximating the Chemical Structure of Partially-Premixed and Diffusion Counter-Flow Flames Using FPI Flamelet Tabulation
,”
Combust. Flame
,
140
(
3
), pp.
147
160
.10.1016/j.combustflame.2004.11.002
16.
Peters
,
N.
,
1988
, “
Laminar Flamelet Concepts in Turbulent Combustion
,”
Sym. (Int.) Combust.
,
21
(
1
), pp.
1231
1250
.10.1016/S0082-0784(88)80355-2
17.
Borghi
,
R.
,
1988
, “
Turbulent Combustion Modeling
,”
Prog. Energy Combust. Sci.
,
14
(
4
), pp.
245
292
.10.1016/0360-1285(88)90015-9
18.
Pope
,
S.
,
1985
, “
PDF Methods for Turbulent Reacting Flows
,”
Prog. Energy Combust. Sci.
,
11
, pp.
119
195
.10.1016/0360-1285(85)90002-4
19.
Prade
,
B.
,
Strab
,
H.
,
Berenbrink
,
P.
, and
Schetter
,
B.
,
1996
, “
Development of an Improved Hybrid Burner—Initial Operating Experience in a Gas Turbine
,” ASME Paper No. 96-GT-45.
20.
Fichet
,
V.
,
Kanniche
,
M.
,
Plion
,
P.
, and
Gicquel
,
O.
,
2010
, “
A Reactor Network Model for Predicting NOx Emissions in Gas Turbines
,”
Fuel
,
89
(
9
), pp.
2202
2210
.10.1016/j.fuel.2010.02.010
21.
Holdeman
,
J. D.
,
Liscinsky
,
D. S.
, and
Bain
,
D. B.
,
1999
, “
Mixing of Multiple Jets With a Confined Subsonic Crossflow: Part II—Opposed Rows of Orifices in Rectangular Ducts
,”
ASME J. Eng. Gas Turbines Power
,
121
(
3
), pp.
551
562
.10.1115/1.2818508
22.
Schneiders
,
T.
,
Hoeren
,
A.
,
Michalski
,
B.
,
Pfost
,
H.
,
Scherer
,
V.
, and
Koestlin
,
B.
,
2001
, “
Investigation of Unsteady Gas Mixing Processes in Gas Turbine Burners Applying a Tracer-LIF Method
,”
Proceedings of ASME Turbo Expo
,
New Orleans, LA
, June 4–7, ASME Paper No. 2001-GT-0049.
23.
Galeazzo
,
F. C. C.
,
Donnert
,
G.
,
Habisreuther
,
P.
,
Zarzalis
,
N.
,
Valdes
,
R. J.
, and
Krebs
,
W.
,
2010
, “
Measurement and Simulation of Turbulent Mixing in a Jet in Crossflow
,”
ASME J. Eng. Gas Turbines Power
,
133
(
6
), p.
061504
.10.1115/1.4002319
24.
Ivanova
,
E.
,
Noll
,
B.
,
Di Domenico
,
M.
, and
Aigner
,
M.
,
2009
, “
Unsteady Simulations of Flow Field and Scalar Mixing in Transverse Jets
,”
ASME
Paper No. GT2009-59147.10.1115/GT2009-59147
25.
Ivanova
,
E.
,
Noll
,
B.
, and
Aigner
,
M.
,
2010
, “
Unsteady Simulations of Turbulent Mixing in Jet in Crossflow
,”
40th Fluid Dynamics Conference and Exhibit
,
Chicago
, June 28–July 1,
AIAA
Paper No. 2010-4724.10.2514/6.2010-4724
26.
Syed
,
K. J.
,
Roden
,
K.
, and
Martin
,
P.
,
2006
, “
A Novel Approach to Predicting NOx Emissions From Dry Low Emissions Gas Turbines
”,
ASME Turbo Expo
,
Barcelona
, May 8–11,
ASME
Paper No. GT2006-90333.10.1115/GT2006-90333
27.
Lacarell
,
A.
,
Göke
,
S.
, and
Paschereit
,
C. O.
,
2010
, “
Quantitative Link Between Cold-Flow Scalar Unmixedness and NOx Emissions in a Conical Premixed Burner
,”
ASME
Paper No. GT2010-23132.10.1115/GT2010-23132
28.
Fric
,
T.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.10.1017/S0022112094003800
29.
Rutar
,
T.
,
Martin
,
S. M.
,
Nicol
,
D. G.
,
Malte
,
P. C.
, and
Pratt
,
D. T.
,
1997
, “
Effects of Incomplete Premixing on NOx Formation at Temperature and Pressure Conditions of LP Combustion Turbines
,” ASME Paper No. 97-GT-335.
30.
Correa
,
S. M.
, and
Braaten
,
M. E.
,
1993
, “
Parallel Simulations of Partially Stirred Methane Combustion
,”
Combust. Flame
,
94
, pp.
469
486
.10.1016/0010-2180(93)90128-P
31.
“GRI-Mech Home Page
”, University of California-Berkeley, Berkeley, CA, http://www.me.berkeley.edu/gri-mech/index.html
32.
Mongia
,
R. K.
,
Tomita
,
E.
,
Hsu
,
F. K.
,
Talbot
,
L.
, and
Dibble
,
R. W.
,
1996
, “
Use of an Optical Probe for Time-Resolved In Situ Measurement of Local Air-to-Fuel Ratio and Extent of Fuel Mixing With Applications to Low NOx Emissions in Premixed Gas Turbines
,”
Sym. (Int.) Combust.
,
26
, pp.
2749
2755
.10.1016/S0082-0784(96)80112-3
33.
Burgess
,
D.
,
1962
, “
Structure and Propagation of Turbulent Bunsen Flames
,” Bureau of Mines, Bulletin No. 604.
34.
Forney
,
L. J.
, and
Nafia
,
N.
,
1998
, “
Turbulent Jet Reactors: Mixing Time Scales
,”
Chem. Eng. Res. Des.
,
76
, pp.
728
736
.10.1205/026387698525432
35.
Pierce
,
C.
, and
Moin
,
P.
,
1998
, “
A Dynamic Model for Subgrid-Scale Variance and Dissipation Rate of a Conserved Scalar
,”
Phys. Fluids
,
10
(
12
), pp.
3041
3044
.10.1063/1.869832
36.
Kern
,
M.
,
Fokaides
,
P.
,
Habisreuther
,
P.
, and
Zarzalis
,
N.
,
2009
, “
Applicability of a Flamelet and a Presumed JPDF 2-Domain-1-Step-Kinetic Turbulent Reaction Model for the Simulation of a Lifted Swirl Flame
,”
Proceedings of ASME Turbo Expo 2009: Power for Land
,
Sea and Air
,
Orlando, FL
, June 8–12,
ASME
Paper No. GT2009-59435.10.1115/GT2009-59435
37.
Carroni
,
R.
,
Griffin
,
T.
,
Mantzaras
,
J.
, and
Reinke
,
M.
,
2003
, “
High-Pressure Experiments and Modeling of Methane/Air Catalytic Combustion for Power-Generation Applications
,”
Catal. Today
,
83
, pp.
157
170
.10.1016/S0920-5861(03)00226-8
38.
Semendjajew
,
K. A.
,
2008
,
Taschenbuch der Mathematik
,
Harri Deutsch Verlag
,
Frankfurt am Main, Germany
.
You do not currently have access to this content.