The turbulent flame speed (ST) is proposed to be an indicator of the flashback propensity for hydrogen-rich fuel gases at gas turbine relevant conditions. Flashback is an inevitable issue to be concerned about when introducing fuel gases containing high hydrogen content to gas turbine engines, which are conventionally fueled with natural gas. These hydrogen-containing fuel gases are present in the process of the integrated gasification combined cycle (IGCC), with and without precombustion carbon capture, and both syngas (H2 + CO) and hydrogen with various degrees of inert dilution fall in this category. Thus, a greater understanding of the flashback phenomenon for these mixtures is necessary in order to evolve the IGCC concept (either with or without carbon capture) into a promising candidate for clean power generation. Compared to syngas, the hydrogen-rich fuel mixtures exhibit an even narrower operational envelope between the occurrence of lean blow out and flashback. When flashback occurs, the flame propagation is found to occur exclusively in the boundary layer of the pipe supplying the premixed fuel/air mixture to the combustor. This finding is based on the experimental investigation of turbulent lean-premixed nonswirled confined jet flames for three fuel mixtures with H2 > 70 vol. %. Measurements were performed up to 10 bar at a fixed bulk velocity at the combustor inlet (u0 = 40 m/s) and preheat temperature (T0 = 623 K). Flame front characteristics were retrieved via planar laser-induced fluorescence of the hydroxyl radical (OH-PLIF) diagnostics and the turbulent flame speed (ST) was derived, accordingly, from the perspective of a global consumption rate. Concerning the flashback limit, the operational range of the hydrogen-rich mixtures is found to be well represented by the velocity gradients prescribed by the flame (gc) and the flow (gf), respectively. The former (gc) is determined as ST/(Le × δL0), where Le is the Lewis number and δL0 is the calculated thermal thickness of the one-dimensional laminar flame. The latter (gf) is predicted by the Blasius correlation for fully developed turbulent pipe flow and it indicates the capability with which the flow can counteract the opposed flame propagation. Our results show that the equivalence ratios at which the two velocity gradients reach similar levels correspond well to the flashback limits observed at various pressures. The methodology is also found to be capable of predicting the aforementioned difference in the operational range between syngas and hydrogen-rich mixtures.

References

References
1.
Lieuwen
,
T.
,
McDonell
,
V.
,
Santavicca
,
D.
, and
Sattelmayer
,
T.
,
2008
, “
Burner Development and Operability Issues Associated With Steady Flowing Syngas Fired Combustors
,”
Combust. Sci. Technol.
,
180
, pp.
1169
1192
.10.1080/00102200801963375
2.
Lewis
,
B.
, and
von Elbe
,
G.
,
1943
, “
Stability and Structure of Burner Flames
,”
J. Chem. Phys.
,
11
, pp.
75
97
.10.1063/1.1723808
3.
Putnam
,
A. A.
, and
Jensen
,
R. A.
,
1949
, “
Application of Dimensionless Numbers to Flash-Back and Other Combustion Phenomena
,”
Third Symposium on Combustion, Flame, and Explosion Phenomena
, Madison, WI, September 7–11, 1948, Vol.
3
, pp.
89
98
.
4.
Versailles
,
P.
,
Chishty
,
W. A.
, and
Vo
,
H. D.
,
2012
, “
Plasma Actuation Control of Boundary Layer Flashback in Lean Premixed Combustor
,”
Proceedings of the ASME Turbo Expo 2012
,
Copenhagen, Denmark
, June 11–15,
ASME
Paper No. GT2012-6822410.1115/GT2012-68224.
5.
Wohl
,
K.
,
1953
, “
Quenching, Flash-Back, Blow-Off—Theory and Experiment
,”
Fourth Symposium (International) on Combustion
, Vol.
4
, pp.
68
89
.10.1016/S0082-0784(53)80011-1
6.
Grumer
,
J.
,
1958
, “
Technical Notes: Flashback and Blowoff Limits of Unpiloted Turbulent Flames
,”
Jet Propul.
,
28
(
11
), pp.
756
759
10.2514/8.7447.
7.
Fine
,
B.
,
1958
, “
The Flashback of Laminar and Turbulent Burner Flames at Reduced Pressure
,”
Combust. Flame
,
2
(
3
), pp.
253
266
.10.1016/0010-2180(58)90046-4
8.
Fine
,
B.
,
1959
, “
Effect of Initial Temperature on Flash Back of Laminar and Turbulent Burner Flames
,”
Ind. Eng. Chem.
,
51
(
4
), pp.
564
566
.10.1021/ie50592a044
9.
Khitrin
,
L. N.
,
Moin
,
P. B.
,
Smirnov
,
D. B.
, and
Shevchuk
,
V. U.
,
1965
, “
Peculiarities of Laminar- and Turbulent-Flame Flashbacks
,”
Tenth Symposium (International) on Combustion
,
10
(
1
), pp.
1285
1291
10.1016/S0082-0784(65)80263-6.
10.
Shaffer
,
B.
,
Duan
,
Z.
, and
McDonell
,
V.
,
2012
, “
Study of Fuel Composition Effects on Flashback Using a Confined Jet Flame Burner
,”
Proceedings of the ASME Turbo Expo 2012
,
Copenhagen, Denmark
, June 11–15,
ASME
Paper No. GT2012-6935710.1115/GT2012-69357.
11.
Bollinger
,
L. E.
, and
Edse
,
R.
,
1956
, “
Effect of Burner-Tip Temperature on Flash Back of Turbulent Hydrogen-Oxygen Flames
,”
Ind. Eng. Chem.
,
48
(
4
), pp.
802
807
.10.1021/ie50556a040
12.
Wang
,
Q.
,
McDonell
,
V.
,
Steinthorsson
,
E.
,
Mansour
,
A.
, and
Hollon
,
B.
,
2009
, “
Correlating Flashback Tendencies for Premixed Injection of Hydrogen and Methane Mixtures at Elevated Temperature and Pressure
,”
Proceedings of the ASME Turbo Expo 2009
,
Orlando, FL
, June 8–12,
ASME
Paper No. GT2009-5950010.1115/GT2009-59500.
13.
Beerer
,
D.
,
McDonell
,
V.
,
Therkelsen
,
P.
, and
Cheng
,
R. K.
,
2012
, “
Flashback, Blow Out, Emission, and Turbulent Displacement Flame Speed Measurements in a Hydrogen and Methane Fired Low-Swirl Injector at Elevated Pressures and Temperatures
,”
Proceedings of the ASME Turbo Expo 2012
,
Copenhagen, Denmark
, June 11–15,
ASME
Paper No. GT2012-6821610.1115/GT2012-68216.
14.
Eichler
,
C.
, and
Sattelmayer
,
T.
,
2011
, “
Experiments on Flame Flashback in a Quasi-2D Turbulent Wall Boundary Layer for Premixed Methane-Hydrogen-Air Mixtures
,”
ASME J. Eng. Gas Turbines Power
,
133
, p.
011503
.10.1115/1.4001985
15.
Eichler
,
C.
,
Baumgartner
,
G.
, and
Sattelmayer
,
T.
,
2011
, “
Experimental Investigation of Turbulent Boundary Layer Flashback Limits for Premixed Hydrogen-Air Flames Confined in Ducts
,”
Proceedings of the ASME Turbo Expo 2011
,
Vancouver, BC, Canada
, June 6–10,
ASME
Paper No. GT2011-4536210.1115/GT2011-45362.
16.
Putnam
,
A. A.
,
Ball
,
D. A.
, and
Levy
,
A.
,
1980
, “
Effect of Fuel Composition on Relation of Burning Velocity to Product of Quenching Distance and Flashback Velocity Gradient
,”
Combust. Flame
,
37
, pp.
193
196
.10.1016/0010-2180(80)90085-1
17.
Davu
,
D.
,
Franco
,
R.
,
Choudhuri
,
A.
, and
Lewis
,
R.
,
2005
, “
Investigation on Flashback Propensity of Syngas Premixed Flames
,”
41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
Tucson, AZ
, July 10–14,
AIAA
Paper No. 2005-358510.2514/6.2005-3585.
18.
Kurdyumov
,
V.
,
Fernández
,
E.
, and
Liñán
,
A.
,
2000
, “
Flame Flashback and Propagation of Premixed Flames Near Wall
,”
Proc. Combust. Inst.
,
28
, pp.
1883
1889
.10.1016/S0082-0784(00)80592-5
19.
Kurdyumov
,
V.
,
Fernández-Tarrazo
,
E.
,
Truffaut
,
J.-M.
,
Quinard
,
J.
,
Wangher
,
A.
, and
Searby
,
G.
,
2007
, “
Experimental and Numerical Study on Premixed Flame Flashback
,”
Proc. Combust. Inst.
,
31
, pp.
1275
1282
.10.1016/j.proci.2006.07.100
20.
Kobayashi
,
H.
,
Otawara
,
Y.
,
Wang
,
J.
,
Matsuno
,
F.
,
Ogami
,
Y.
,
Okuyama
,
M.
,
Kudo
,
T.
, and
Kadowaki
,
S.
,
2013
, “
Turbulent Premixed Flame Characteristics of a CO/H2/O2 Mixture Highly Diluted With CO2 in a High-Pressure Environment
,”
Proc. Combust. Inst.
,
34
, pp.
1437
1445
.10.1016/j.proci.2012.05.048
21.
Bradley
,
D.
,
Lawes
,
M.
,
Liu
,
K.
, and
Mansour
,
M. S.
,
2013
, “
Measurements and Correlations of Turbulent Burning Velocities Over Wide Ranges of Fuels and Elevated Pressures
,”
Proc. Combust. Inst.
,
34
, pp.
1519
1526
.10.1016/j.proci.2012.06.060
22.
Marshall
,
A. D.
,
Venkateswaren
,
P.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T. C.
,
2012
, “
Pressure Effects on the Turbulent Consumption Speeds of High H2 Mixtures
,”
Proceedings of the ASME Turbo Expo 2012
,
Copenhagen, Denmark
, June 11–15,
ASME
Paper No. GT2012-6830510.1115/GT2012-68305.
23.
Venkateswaren
,
P.
,
Marshall
,
A.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2013
, “
Pressure and Fuel Effects on Turbulent Consumption Speeds of H2/CO Blends
,”
Proc. Combust. Inst.
,
34
, pp.
1527
1535
.10.1016/j.proci.2012.06.077
24.
Daniele
,
S.
,
Jansohn
,
P.
,
Mantzaras
,
J.
, and
Boulouchos
,
K.
,
2011
, “
Turbulent Flame Speed for Syngas at Gas Turbine Relevant Conditions
,”
Proc. Combust. Inst.
,
33
, pp.
2937
2944
.10.1016/j.proci.2010.05.057
25.
Daniele
,
S.
, and
Jansohn
,
P.
,
2012
, “
Correlations for Turbulent Flame Speed of Different Syngas Mixtures at High Pressure and Temperature
,”
Proceedings of the ASME Turbo Expo 2012
,
Copenhagen, Denmark
, June 11–15,
ASME
Paper No. GT2012-69611.10.1115/GT2012-69611
26.
Lin
,
Y.-C.
,
Daniele
,
S.
,
Jansohn
,
P.
, and
Boulouchos
,
K.
,
2012
, “
Combustion Characteristics and NOx Emission of Hydrogen-Rich Fuel Gases at Gas Turbine Relevant Conditions
,”
Proceedings of the ASME Turbo Expo 2012
,
Copenhagen, Denmark
, June 11–15,
ASME
Paper No. GT2012-6908010.1115/GT2012-69080.
27.
Daniele
,
S.
,
Jansohn
,
P.
, and
Boulouchos
,
K.
,
2010
, “
Flashback Propensity of Syngas Flames at High Pressure: Diagnostic and Control
,”
Proceedings of the ASME Turbo Expo 2010
,
Glasgow, UK
, June 14–18,
ASME
Paper No. GT2010-2345610.1115/GT2010-23456.
28.
Daniele
,
S.
,
2011
, “
Lean Premixed Syngas Combustion for Gas Turbine Applications
,” Ph.D. thesis, ETH Zurich, Zurich, Diss. ETH No. 19657.
29.
Lin
,
Y.-C.
,
Matuszewski
,
M.
,
Daniele
,
S.
,
Jansohn
,
P.
, and
Boulouchos
,
K.
,
2011
, “
NOx Emission for Combustion Systems Relevant to Zero Emission Power Concepts
,”
Fifth European Combustion Meeting
,
Cardiff, UK
, June 28–July 1.
30.
Siewert
,
P.
,
2006
, “
Flame Front Characteristics of Turbulent Lean Premixed Methane/Air Flames at High-Pressure
,” Ph.D. thesis, ETH Zurich, Zurich, Diss. ETH No. 16369.
31.
Hale
,
C. A.
,
Plesniak
,
M. W.
, and
Ramadhyani
,
S.
,
2000
, “
Structural Features and Surface Heat Transfer Associated With a Row of Short-Hole Jets in Crossflow
,”
Int. J. Heat Fluid Flow
,
21
, pp.
542
553
.10.1016/S0142-727X(00)00043-6
32.
Daniele
,
S.
,
Jansohn
,
P.
, and
Boulouchos
,
K.
,
2009
, “
Flame Front Characteristic and Turbulent Flame Speed of Lean Premixed Syngas Combustion at Gas Turbine Relevant Conditions
,”
Proceedings of the ASME Turbo Expo 2009
,
Orlando, FL
, June 8–12,
ASME
Paper No. GT2009-5947710.1115/GT2009-59477.
33.
Goodwin
,
D.
2003
, “
An Open-Source, Extensible Software Suite for CVD Process Simulation
,”
Proceedings of the CVD XVI and EuroCVD Fourteen
, Paris, April 27–May 2, ECS Proceedings, Vol. 2003–08,
M.
Allendorf
,
F.
Maury
, and
F.
Teyssandier
, eds., The Electrochemical Society, Pennington, NJ, pp.
155
162
.
34.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
,
Chaos
,
M.
,
Dryer
,
F. L.
, and
Scire
,
J. J.
, Jr.
,
2007
, “
A Comprehensive Kinetic Mechanism for CO, CH2O, and CH3OH Combustion
,”
Int. J. Chem. Kinet.
,
39
, pp.
109
136
.10.1002/kin.20218
35.
Ströhle
,
J.
, and
Myhrvold
,
T.
,
2007
, “
An Evaluation of Detailed Reaction Mechanisms for Hydrogen Combustion Under Gas Turbine Conditions
,”
Int. J. Hydrogen Energy
,
32
, pp.
125
135
.10.1016/j.ijhydene.2006.04.005
36.
Burke
,
M. P.
,
Chaos
,
M.
,
Ju
,
Y.
,
Dryer
,
F. L.
, and
Klippenstein
,
S. J.
,
2012
, “
Comprehensive H2/O2 Kinetic Model for High-Pressure Combustion
,”
Int. J. Chem. Kinet.
,
44
, pp.
444
474
.10.1002/kin.20603
37.
Dandy
,
D.
,
2012
, “
Transport Property Evaluation
,” Colorado State University, Fort Collins, CO, available at http://navier.engr.colostate.edu/~dandy/code/code-2/index.html
38.
White
,
F. M.
,
1991
,
Viscous Fluid Flow
,
McGraw-Hill
,
Singapore
.
39.
Ballal
,
D. R.
and
Lefebvre
,
A. H.
,
1977
, “
Ignition and Flame Quenching in Flowing Gaseous Mixtures
,”
Proc. R. Soc. London, Ser. A
,
357
, pp.
163
181
.10.1098/rspa.1977.0161
40.
Schäfer
,
O.
,
Koch
,
R.
, and
Wittig
,
S.
,
2003
, “
Flashback in Lean Prevaporized Premixed Combustion: Nonswirling Turbulent Pipe Flow Study
,”
ASME J. Eng. Gas Turbines Power
,
125
, pp.
670
676
.10.1115/1.1581897
You do not currently have access to this content.