Progress in the development of electrical storage and conversion technology progressively attains focus in aerospace motive power research. Novel propulsion system concepts based on hybrid or even entirely electrical energy sources are seriously considered for aircraft design. To this point, unified figures of merit are required in order to allow for consistent comparative investigations of existing combustion engines and future electrically-based propulsion systems. Firstly, this paper identifies the shortcomings of conventional performance metrics used for nonthermal electrical conversion processes and then approaches exergy-based loss methods as means of metrics extensions. Subsequently, energy source-independent figures of merit based on exergy analysis are derived and embedded into the well-known performance definitions. Finally, the unified metrics are demonstrated through application to a conventional turbofan, a parallel-hybrid turbofan, a novel integrated-hybrid turbofan concept, and an entirely electrical fan concept.

References

1.
Kuhn
,
H.
, and
Sizmann
,
A.
,
2012
, “
Fundamental Prerequisites for Electric Flying
,”
Proceedings of the Deutscher Luft- und Raumfahrtkongress (DLRK)
,
Berlin, Germany
, September 10–12.
2.
Seitz
,
A.
,
Schmitz
,
O.
,
Isikveren
,
A. T.
, and
Hornung
,
M.
,
2012
, “
Electrically Powered Propulsion: Comparison and Contrast to Gas Turbines
,”
Proceedings of the Deutscher Luft- und Raumfahrtkongress (DLRK)
,
Berlin, Germany
, September 10–12.
3.
Advisory Council for Aviation Research and Innovation in Europe (ACARE), 2012, “Strategic Research & Innovation Agenda (SRIA)–Volume 1,” http://www.acare4europe.org/sites/acare4europe.org/files/attachment/SRIA%20Volume%201.pdf
4.
European Commission
,
2011
, “Flightpath 2050: Europe's Vision for Aviation,” Report of the High Level Group on Aviation Research,
Publications Office of the European Union
,
Luxembourg
.
5.
Baehr
,
H. D.
,
1981
,
Thermodynamik
,
Springer-Verlag
,
Berlin
, Germany.
6.
Clarke
,
J. M.
, and
Horlock
,
J. H.
,
1975
, “
Availability and Propulsion
,”
J. Mech. Eng. Sci.
,
17
(
4
), pp.
223
232
.10.1243/JMES_JOUR_1975_017_033_02
7.
Lewis
,
J. H.
,
1976
, “
Propulsive Efficiency From an Energy Utilization Standpoint
,”
J. Aircr.
,
13
(
4
), pp.
299
302
.10.2514/3.44525
8.
Brilliant
,
H. M.
,
1995
, “
Second Law Analysis of Present and Future Turbine Engines
,”
AIAA
Paper No. 95-3030.10.2514/6.1995-3030
9.
Etele
,
J.
, and
Rosen
,
M. A.
,
2000
, “
Exergy Losses for Aerospace Engines: Effect of Reference-Environments on Assessment Accuracy
,”
AIAA
Paper No. 00-0744.10.2514/6.2000-744
10.
Roth
,
B. A.
, and
Mavris
,
D. N.
,
2000
, “
A Comparison of Thermodynamic Loss Models Suitable for Gas Turbine Propulsion: Theory and Taxonomy
,”
AIAA
Paper No. 2000-3714.10.2514/6.2000-3714
11.
Roth
,
B. A.
, and
Mavris
,
D. N.
,
2001
, “
Work Availability Perspective of Turbofan Engine Performance
,”
AIAA
Paper No. 2001-0391.10.2514/6.2001-391
12.
Roth
,
B. A.
, and
Mavris
,
D. N.
,
2001
, “
Comparison of Thermodynamic Loss Models Suitable for Gas Turbine Propulsion
,”
J. Propul. Power
,
17
(
2
), pp.
324
332
.10.2514/2.5745
13.
Roth
,
B. A.
,
2004
, “
Work Transfer Analysis of Turbojet and Turbofan Engines
,”
Proceedings of the 40th Joint Propulsion Conference
,
Fort Lauderdale, FL
, July 11–14,
AIAA
Paper No. 2004-4077.10.2514/6.2004-4077
14.
Roth
,
B. A.
,
2004
, “
A Work Transfer Perspective of Propulsion System Performances
,”
Proceedings of the 40th Joint Propulsion Conference
,
Fort Lauderdale, FL
, July 11–14,
AIAA
Paper No. 2004-4079.10.2514/6.2004-4079
15.
Sanford
,
G.
, and
McBride
,
B. J.
,
1994
, “
Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, I. Analysis
,” NASA Reference Publication, Report No. 1311.
16.
Grieb
,
H.
, and
Schubert
,
H.
, ed.,
2004
,
Projektierung von Turboflugtriebwerken
,
Birkhäuser Verlag
,
Berlin, Germany
.
17.
Schmitz
,
O.
,
2011
, “
Definition of Unified Performance Metrics for Combustion, Hybrid and Electric Propulsion Systems
,” Bauhaus Luftfahrt e.V., Internal Report No. IB-11021.
18.
SAE
,
2004
, “
Aircraft Propulsion System Performance Station Designation and Nomenclature
,” Aerospace Standard No. AS 755B, Rev. D.
19.
Schmitz
,
O.
,
2012
, “
Fahrzeugtriebwerk, Fahrzeug mit diesem Fahrzeugtriebwerk und Verfahren zum Betrieb dieses Fahrzeugtriebwerkes
,” Patent No. DE 10 2012 015 104.7.
20.
Schmitz
,
O.
,
2011
, “
Framework for Aircraft Propulsion System Simulation (APSS)
,” Bauhaus Luftfahrt e.V., Internal Report No. IB-12009.
21.
Kurzke
,
J.
,
2010
,
GasTurb 11 Software
, Compiled With Delphi 2007, Dachau, Germany.
22.
Kuhn
,
H.
,
Falter
,
C.
, and
Sizmann
,
A.
,
2011
, “
Renewable Energy Perspectives for Aviation
,”
Proceedings of the 3rd CEAS Air & Space Conference and 21st AIDAA Congress
,
Venice, Italy
, October 24–28.
You do not currently have access to this content.