This work presents a numerical study on the turbulent Schmidt numbers in jets in crossflow. This study contains two main parts. In the first part, the problem of the proper choice of the turbulent Schmidt number in the Reynolds-averaged Navier-Stokes (RANS) jet in crossflow mixing simulations is outlined. The results of RANS employing the shear-stress transport (SST) model of Menter and its curvature correction modification and different turbulent Schmidt number values are validated against experimental data. The dependence of the optimal value of the turbulent Schmidt number on the dynamic RANS model is studied. Furthermore, a comparison is made with the large-eddy simulation (LES) results obtained using the wall-adapted local eddy viscosity (WALE) model. The accuracy given by LES is superior in comparison to RANS results. This leads to the second part of the current study, in which the time-averaged mean and fluctuating velocity and scalar fields from LES are used for the evaluation of the turbulent viscosities, turbulent scalar diffusivities, and the turbulent Schmidt numbers in a jet in crossflow configuration. The values obtained from the LES data are compared with those given by the RANS modeling. The deviations are discussed, and the possible ways for the RANS model improvements are outlined.

References

References
1.
Kays
,
W. M.
,
1994
, “
Turbulent Prandtl Number—Where Are We?
ASME J. Heat Transfer
,
116
, pp.
284
295
.10.1115/1.2911398
2.
Launder
,
B. E.
,
1976
, “
Heat and Mass Transport
,”
Turbulence, Topics in Applied Physics, Vol. 12
,
P.
Bradshaw
, ed.,
Springer
,
Berlin
, pp.
232
287
.
3.
Reynolds
,
A. J.
,
1976
, “
The Variation of Turbulent Prandtl and Schmidt Numbers in Wakes and Jets
,”
Int. J. Heat Mass Transfer
,
19
, pp.
757
764
.10.1016/0017-9310(76)90128-9
4.
Alvarez
,
J.
,
Jones
,
W. P.
, and
Seoud
,
R.
,
1993
, “
Predictions of Momentum and Scalar Fields in a Jet in Cross-Flow Using First and Second Order Turbulence Closures
,”
Proceedings of the AGARD Conference
,
Computational and Experiment Assessment of Jets in Cross Flow
,
Winchester, UK
, April 19–22, pp.
1
10
.
5.
Ivanova
,
E.
,
Noll
,
B.
,
Di Domenico
,
M.
, and
Aigner
,
M.
,
2008
, “
Improvement and Assessment of RANS Scalar Transport Models for Jets in Crossflow
,”
Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno
,
NV
, January 7–10, Paper No. AIAA-2008-565.
6.
Ivanova
,
E.
,
Noll
,
B.
,
Di Domenico
,
M.
, and
Aigner
,
M.
,
2009
, “
Unsteady Simulations of Flow Field and Scalar Mixing in Transverse Jets
,”
Proceedings of ASME Turbo Expo 2009: Power for Land
,
Sea and Air
,
Orlando, FL
,
ASME
Paper No. GT2009-59147, pp.
101
110
.10.1115/GT2009-59147
7.
Ivanova
,
E.
,
Noll
,
B.
, and
Aigner
,
M.
,
2011
, “
Computational Modelling of Turbulent Mixing of a Transverse Jet
,”
ASME J. Eng. Gas Turbines Power
,
133
(
2
), p.
021505
.10.1115/1.4002015
8.
Malecki
,
R. E.
,
Colket
,
M. B.
,
Rhie
,
C. M.
,
McKinney
,
R. G.
,
Ouyang
,
H.
,
Syed
,
S. A.
, and
Madabhushi
,
R. K.
,
2001
, “
Application of an Advanced CFD-Based Analysis System to the PW6000 Combustor to Optimize Exit Temperature Distribution—Part 1: Description and Validation of the Analysis Tool
,”
Proceedings of the ASME Turbo Expo 2001
, Paper No. 2001-GT-0062.
9.
Galeazzo
,
F. C. C.
,
Donnert
,
G.
,
Habisreuther
,
P.
,
Zarzalis
,
N.
,
Valdes
,
R. J.
, and
Krebs
,
W.
,
2010
, “
Measurement and Simulation of Turbulent Mixing in a Jet in Crossflow
,”
Proceedings of the ASME Turbo Expo 2010: Power for Land
,
Sea and Air
,
Glasgow, UK
, June 14–18,
ASME
Paper No. GT2010-22709, pp.
571
582
10.1115/GT2010-22709.
10.
Jones
,
W.
, and
Launder
,
B.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model
,”
Int. J. Heat Mass Transfer
,
15
, pp.
301
314
.10.1016/0017-9310(72)90076-2
11.
He
,
G.
,
Guo
,
Y.
, and
Hsu
,
A. T.
,
1999
, “
The Effect of Schmidt Number on Turbulent Scalar Mixing in a Jet-In-Crossflow
.”
Int. J. Heat Mass Transfer
,
42
, pp.
3727
3738
.10.1016/S0017-9310(99)00050-2
12.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
13.
Yuan
,
L. L.
,
Street
,
R. L.
, and
Ferziger
,
J. H.
,
1999
, “
Large-Eddy Simulations of a Round Jet in Crossflow
,”
J. Fluid Mech.
,
379
, pp.
71
104
.10.1017/S0022112098003346
14.
Schlüter
,
J. U.
, and
Schönfeld
,
T.
,
2000
, “
LES of Jets in Cross Flow and its Application to a Gas Turbine Burner
,”
Flow, Turbul. Combust.
,
65
, pp.
177
203
.10.1023/A:1011412810639
15.
Majander
,
P.
, and
Siikonen
,
T.
,
2006
, “
Large-Eddy Simulation of a Round Jet in a Crossflow
,”
Int. J. Heat Fluid Flow
,
27
, pp.
402
415
.10.1016/j.ijheatfluidflow.2006.01.004
16.
Salewski
,
M.
,
Stankovic
,
D.
, and
Fuchs
,
L.
,
2008
, “
Mixing in Circular and Non-Circular Jets in Crossflow
,”
Flow, Turbul. Combust.
,
80
, pp.
255
283
.10.1007/s10494-007-9119-x
17.
Wegner
,
B.
,
Huai
,
Y.
, and
Sadiki
,
A.
,
2004
, “
Comparative Study of Turbulent Mixing in Jet in Cross-Flow Configurations Using LES
,”
Int. J. Heat Fluid Flow
,
25
, pp.
767
775
.10.1016/j.ijheatfluidflow.2004.05.015
18.
Jouhaud
,
J.-C.
,
Gicquel
,
L. Y. M.
, and
Enaux
,
B.
,
2007
, “
Large-Eddy-Simulation Modeling for Aerothermal Predictions Behind a Jet in Crossflow
,”
AIAA J.
,
45
(
10
), pp.
2438
2447
.10.2514/1.28392
19.
Dejoan
,
A.
, and
Leschziner
,
M. A.
,
2005
, “
Large Eddy Simulation of a Plane Turbulent Wall Jet
,”
Phys. Fluids
,
17
, p.
025102
.10.1063/1.1833413
20.
Bogey
,
C.
, and
Bailly
,
C.
,
2009
, “
Turbulence and Energy Budget in a Self-Preserving Round Jet: Direct Evaluation Using Large Eddy Simulation
,”
J. Fluid Mech.
,
627
, pp.
129
160
.10.1017/S0022112009005801
21.
Dianat
,
M.
,
Jiang
,
D.
,
Yang
,
Z.
, and
McGuirk
,
J.
,
2005
, “
Simulation of Scalar Mixing in Co-Axial Jet Flows Using an LES Method
,”
Proceedings of GT2005 ASME Turbo Expo 2005: Power for Land
,
Sea and Air
, Reno, NV, June 6–9,
ASME
Paper No. GT2005-69010, pp.
721
728
.10.1115/GT2005-69010
22.
Lischer
,
T.
,
Donnert
,
G.
,
Galleazzo
,
F.
,
Habisreuther
,
P.
,
Zarzalis
,
N.
,
Valdes
,
R.
, and
Krebs
,
W.
,
2008
, “
Simultaneous Velocity and Concentration Measurements Using Laser-Optical Measurement Methods in Comparison With Reynolds-Averaged Navier-Stokes Models
,”
Proceedings of the 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, February 17–22, Paper No. ISROMAC12-2008-20112.
23.
Cardenas
,
C.
,
Suntz
,
R.
,
Denev
,
J.
, and
Bockhorn
,
H.
,
2007
, “
Two-Dimensional Estimation of Reynolds-Fluxes and -Stresses in a Jet-In-Crossflow Arrangement by Simultaneous 2D-LIV and PIV
,”
Appl. Phys. B
,
88
, pp.
581
591
.10.1007/s00340-007-2734-3
24.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Computat. Fluid Dyn.
,
23
(
4
), pp.
305
316
.10.1080/10618560902773387
25.
Hellsten
,
A.
,
1997
, “
Some Improvements in Menter's k-ω SST Turbulence Model
,”
Proceedings of the 29th AIAA Fluid Dynamics Conference
, Albuquerque, NM, June 15–18, Paper No. AIAA-1998-2554.
26.
Wilcox
,
D. C.
,
1988
, “
Reassesssment of the Scale Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.10.2514/3.10041
27.
Esch
,
T.
, and
Menter
,
F. R.
,
2003
, “
Heat Tranfer Prediction Based on Two-Equation Turbulence Models With Advanced Wall Treatment
,”
Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer
, Antalya, Turkey, October 12–17,
K.
Hanjalic
,
Y.
Nagano
, and
M.
Tummers
, eds.,
Begell House
,
Redding, CT
.
28.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
29.
Ivanova
,
E.
,
Noll
,
B.
, and
Aigner
,
M.
,
2010
, “
Unsteady Simulations of Turbulent Mixing in Jet in Crossflow
,”
Proceedings of the 40th AIAA Fluid Dynamics Conference and Exhibit
, Chicago, June 28–July 1, Paper No. AIAA 2010-4724.
30.
Chorin
,
A.
,
1968
, “
Numerical Solution of Navier-Stokes Equations
,”
Math. Comput.
,
22
(
104
), p.
745
.10.1090/S0025-5718-1968-0242392-2
31.
Gerlinger
,
P.
,
2005
,
Numerische Verbrennungssimulation (Numerical Combustion Simulation)
,
Springer
,
Berlin/Heidelberg
(in German).
32.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow, Series in Computational Methods in Mechanics and Thermal Science
,
Hemisphere Publishing Corporation
,
Washington, DC
.
33.
Klein
,
M.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2003
, “
A Digital Filter Based Generation of Inflow Data for Spatially Developing Direct Numerical or Large Eddy Simulations
,”
J. Comput. Phys.
,
186
, pp.
652
665
.10.1016/S0021-9991(03)00090-1
34.
Ivanova
,
E.
,
2012
, “
Numerical Simulations of Turbulent Mixing in Complex Flows
,”
Institute of Combustion Technology, German Aerospace Center (DLR)
, Technical Report.
You do not currently have access to this content.