The compression ring-bore conjunction accounts for significant frictional parasitic losses relative to its size. The prerequisite to improving the tribological performance of this contact is a fundamental understanding of ring dynamics within the prevailing transient nature of the regime of lubrication. Studies reported thus far take into account ring-bore conformance based on static fitment of the ring within an out-of-round bore, whose out-of-circularity is affected by manufacturing processes, surface treatment, and assembly. The static fitment analyses presume quasi-static equilibrium between ring tension and gas pressure loading with generated conjunctional pressures. This is an implicit assumption of ring rigidity while in situ. The current analysis considers the global modal behavior of the ring as an eigenvalue problem, thus including its dynamic in-plane behavior in the tribological study of a mixed-hydrodynamic regime of lubrication. The results show that the contact transit time is shorter than that required for the ring to reach steady state condition. Hence, the conjunction is not only subject to transience on account of changing contact kinematics and varied combustion loading, but also subject to perpetual ring transient dynamics. This renders the ring-bore friction a more complex problem than usually assumed in idealized ring fitment analyses. An interesting finding of the analysis is increased ring-bore clearance at and in the vicinity of top dead center, which reduces the ring-sealing effect and suggests a possible increase in blow-by. The current analysis, integrating ring in-plane modal dynamics and mixed regime of lubrication, includes salient features, which are a closer representation of practice, an approach which has not hitherto been reported in literature.

References

References
1.
King
,
J.
, 2007,
The King Review of Low Carbon Cars Part I: The Potential for CO2 Reduction
,
Crown
,
Norwich, UK.
2.
Andersson
,
B. S.
, 1991, “
Company’s Perspective in Vehicle Tribology
,”
Proc. 18th Leeds-Lyon Symposium
,
Lyon, France
, 3–6 September,
D.
Dowson
,
C. M.
Taylor
, and
M.
Godet
, eds.,
Elsevier
,
New York
, pp.
503
506
.
3.
Priest
,
M.
, and
Taylor
,
C. M.
, 2000, “
Automobile Engine Tribology—Approaching the Surface
,”
Wear
,
241
, pp.
193
203
.
4.
Tian
,
T.
, 2002, “
Dynamic Behaviour of Piston Rings and Their Practical Impact Part 2: Oil Transport, Friction and Wear of Ring/Liner Interface and the Effects of Piston and Ring Dynamics
,”
Proc. Inst. Mech. Eng., Part J: Eng. Tribol.
,
216
, pp.
229
247
.
5.
Lamb
,
H.
, 1888, “
On the Flexure and Vibrations of a Curved Bar
,”
Proc. London Math. Soc.
,
19
, pp.
365
376
.
6.
Den Hartog
,
J. P.
, 1928, “
The Lowest Natural Frequency of Circular Arcs
,”
Philos. Mag.
,
5
, pp.
400
408
.
7.
Brown
,
F. H.
, 1934, “
Lateral Vibration of Ring Shaped Frames
,”
J. Franklin Inst.
,
217
, pp.
41
48
.
8.
Volterra
,
E.
, and
Morell
,
J. D.
, 1961, “
Lowest Natural Frequency of Elastic Arc for Vibrations Outside the Plane of Initial Curvature
,”
Trans. ASME: J. Appl. Mech.
,
28
, pp.
624
627
.
9.
Love
,
A. E. H.
, 1944,
A Treatise on Mathematical Theory of Elasticity
,
Dover
,
New York
.
10.
Morley
,
L. S. D.
, 1958, “
The Flexural Vibrations of a Cut Thin Ring
,”
Q. J. Mech. Appl. Math.
,
11
, pp.
491
497
.
11.
Archer
,
R. R.
, 1960, “
Small Vibrations of Thin Incomplete Circular Rings
,”
Int. J. Mech. Sci.
,
1
, pp.
45
56
.
12.
Ojalvo
,
I. U.
, 1962, “
Coupled Twist-Bending Vibrations of Incomplete Elastic Rings
,”
Int. J. Mech. Sci.
,
4
, pp.
53
72
.
13.
Timoshenko
,
S.
, and
Goodier
,
J. N.
, 1951,
Theory of Elasticity
,
2nd ed.
,
McGraw-Hill
,
New York
.
14.
Lang
,
T. E.
, 1962, “
Vibration of Thin Circular Rings, Part 1
,” Jet Propulsion Laboratory Technical Report No. 32-261.
15.
Antman
,
S.
, and
Warner
,
W. H.
, 1965, “
Dynamic Stability of Circular Rods
,”
J. Soc. Ind. Appl. Math.
,
13
, pp.
1007
1018
.
16.
Chen
,
S.
, 1973, “
In-Plane Vibration of Continuous Curved Beams
,”
Nucl. Eng. Des.
,
25
, pp.
413
431
.
17.
Gardner
,
T. G.
, and
Bert
,
C. W.
, 1985, “
Vibration of Shear Deformable Rings: Theory and Experiment
,”
J. Sound Vib.
,
103
, pp.
549
565
.
18.
Auciello
,
N. M.
, and
De Rosa
,
M. A.
, 1994, “
Free Vibrations of Circular Arches: A Review
,”
J. Sound Vib.
,
176
, pp.
433
458
.
19.
Kang
,
K. J.
,
Bert
,
C. W.
, and
Striz
,
A. G.
, 1996, “
Vibration and Buckling Analysis of Circular Arches Using DQM
,”
Comput. Struct.
,
60
, pp.
49
57
.
20.
Dowson
,
D.
,
Ruddy
,
B. L.
, and
Economou
,
P. N.
, 1983, “
The Elastohydrodynamic Lubrication of Piston Rings
,”
Proc. R. Soc. London, Ser. A
,
386
, pp.
409
430
.
21.
Johnson
,
K. L.
, 1970, “
Regimes of Elastohydrodynamic Lubrication
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
184
, pp.
9
16
.
22.
Ma
,
M. T.
,
Sherrington
,
I.
, and
Smith
,
E. H.
, 1997, “
Analysis of Lubrication and Friction for a Complete Piston-Ring Pack With an Improved Oil Availability Model Part 1: Circumferentially Uniform Film
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
211
, pp.
1
15
.
23.
Hamilton
,
G. M.
, and
Moore
,
S. L.
, 1974, “
Measurement of the Oil-Film Thickness Between the Piston Rings and Liner of a Small Diesel Engine
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
188
, pp.
253
261
.
24.
Akalin
,
O.
, and
Newaz
,
G. M.
, 2001, “
Piston Ring Cylinder Bore Friction Modelling in Mixed Lubrication Regime. Part I: Analytical Results
,”
Trans. ASME: J. Tribol.
,
123
, pp.
211
218
.
25.
Bolander
,
N. W.
,
Steenwyk
,
B. D.
,
Sadeghi
,
F.
, and
Gerber
,
G. R.
, 2005, “
Lubrication Regime Transitions at the Piston Ring-Cylinder Liner Interface
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
129
, pp.
19
31
.
26.
D’Agostino
,
V.
, and
Senatore
,
A.
, 2010, “
Fundamentals of Lubrication and Friction of Piston Ring Contact
,”
Tribology and Dynamics of Engine and Powertrain
,
H.
Rahnejat
, ed.,
Woodhead Publications
,
Cambridge, UK.
27.
Mishra
,
P. C.
,
Balakrishnan
,
S.
, and
Rahnejat
,
H.
, 2008, “
Tribology of Compression Ring-to-Cylinder Contact at Reversal
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
222
, pp.
815
826
.
28.
Mishra
,
P. C.
,
Rahnejat
,
H.
, and
King
,
P. D.
, 2009, “
Tribology of the Ring-Bore Conjunction Subject to a Mixed Regime of Lubrication
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
223
, pp.
987
998
.
29.
Spencer
,
A.
,
Almqvist
,
A.
, and
Larsson
,
R.
, 2011, “
A Semi-Deterministic Texture-Roughness Model of the Piston Ring–Cylinder Liner Contact
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
225
, pp.
325
333
.
30.
Chong
,
W. W. F.
,
Teodorescu
,
M.
, and
Vaughan
,
N. D.
, 2010, “
Cavitation Induced Starvation for Piston-Ring/Liner Tribological Conjunction
,”
Tribol. Int.
,
44
, pp.
483
497
.
31.
Furuhama
,
S.
, and
Sasaki
,
S.
, 1983, “
New Device for the Measurement of Piston Frictional Forces in Small Engines
,” SAE Paper No. 831284.
32.
Ghosh
,
M. K.
, and
Gupta
,
K.
, 1998, “
Thermal Effect in Hydrodynamic Lubrication of Line Contacts—Piezoviscous Effect Neglected
,”
Int. J. Mech. Sci.
,
40
, pp.
603
616
.
33.
Almqvist
,
T.
, and
Larsson
,
R.
, 2002, “
The Navier-Stokes Approach for Thermal EHL Line Contact Solutions
,”
Tribol. Int.
,
35
, pp.
163
170
.
34.
Knoll
,
G.
,
Peekan
,
H.
,
Lechtape-Grüter
,
R.
, and
Lang
,
J.
, 1996, “
Computer-Aided Simulation of Piston and Piston Ring Dynamics
,”
Trans. ASME: J. Eng. Gas Turbines Power
,
118
, pp.
880
886
.
35.
Piao
,
Y.
, and
Gulwadi
,
S. D.
, 2003, “
Numerical Investigation of the Effects of Axial Cylinder Bore Profiles on Piston Ring Radial Dynamics
,”
Trans. ASME: J. Eng. Gas Turbines Power
,
125
, pp.
1081
1089
.
36.
Tian
,
T.
,
Noordzij
,
L. B.
,
Wong
,
V. W.
, and
Heywood
,
J. B.
, 1998, “
Modelling Piston-Ring Dynamics, Blowby, and Ring-Twist Effects
,”
Trans. ASME: J. Eng. Gas Turbines Power
,
120
, pp.
843
854
.
37.
Baker
,
C. E.
,
Rahmani
,
R.
,
Theodossiades
,
S.
,
Rahnejat
,
H.
, and
Fitzsimons
,
B.
, 2011, “
Thermo-Elastohydrodynamics of a Rough Piston Compression Ring-to-Cylinder Bore Conjunction
,”
Proc. STLE 66th Annual Conference
,
Atlanta, GA
, 15–19 May.
38.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
, 1970, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
185
, pp.
625
633
.
39.
Teodorescu
,
M.
,
Balakrishnan
,
S.
, and
Rahnejat
,
H.
, 2005, “
Integrated Tribological Analysis Within a Multi-Physics Approach to System Dynamics
,”
Tribol. Interface Eng. Ser.
,
48
, pp.
725
737
.
40.
Balakrishnan
,
S.
, and
Rahnejat
,
H.
, 2005, “
Isothermal Transient Analysis of Piston Skirt-to-Cylinder Wall Contacts Under Combined Axial, Lateral and Tilting Motion
,”
J. Phys. D: Appl. Phys.
,
38
, p.
787
.
41.
Hill
,
S. H.
, and
Newman
,
B. A.
, 1985, “
Piston Ring Designs for Reduced Friction
,” SAE Paper No. 841222.
42.
Tomanik
,
E.
, 1996, “
Piston Ring Conformability in a Distorted Bore
,” SAE Paper No. 960356.
You do not currently have access to this content.