A dynamic simulation model of a hybrid solar gas-turbine power plant has been developed, allowing determination of its thermodynamic and economic performance. In order to examine optimum gas-turbine designs for hybrid solar power plants, multiobjective thermoeconomic analysis has been performed, with two conflicting objectives: minimum levelized electricity costs and minimum specific CO2 emissions. Optimum cycle conditions: pressure-ratio, receiver temperature, turbine inlet temperature and flow rate, have been identified for a 15 MWe gas-turbine under different degrees of solarization. At moderate solar shares, the hybrid solar gas-turbine concept was shown to provide significant water and CO2 savings with only a minor increase in the levelized electricity cost.

References

References
1.
Pharabod
,
F.
, and
Philibert
C.
, 1991, “
Les Centrales Solaires LUZ
,” Comité d’Action pour le Solaire, Paris.
2.
Knies
,
G.
,
Möller
,
U.
, and
Straub
M.
, 2007,
Clean Power From Desert: The DESERTEC Concept for Energy, Water and Climate Security
,
4th ed.
,
DESERTEC Foundation
,
Berlin
, http://www.desertec.org/downloads/articles/trec_white_paper.pdfhttp://www.desertec.org/downloads/articles/trec_white_paper.pdf
3.
Heller
,
P.
,
Pfänder
,
M.
,
Denk
,
T.
,
Tellez
,
F.
,
Valverde
,
A.
,
Fernández
,
J.
, and
Ring
A.
, 2006, “
Test and Evaluation of a Solar Powered Gas Turbine System,”
Sol. Energy
,
80
, pp.
1225
1230
.
4.
US Department of Energy, 2001, “
Concentrating Solar Power Commercial Application Study: Reducing Water Consumption ofConcentrating Solar Power Electricity Generation
,” Report to Congress, http://www1.eere.energy.gov/solar/pdfs/csp_water_study.pdf
5.
Wibberley
,
L.
,
Scaife
,
P.
, and
Winsen
J.
, 2008, “
GHG and Cost Implications of Spinning Reserve for High-Penetration Renewables
,” Australian Cooperative Research Centre for Coal, Technology Assessment Report 73, http://pandora.nla.gov.au/pan/64389/20080828-1328/www.ccsd.biz/publications/files/TA/TA%2073%20GHG%20effects_web%20final.pdf
6.
Scheuerer
,
K.
, 1986, “
Berechnung des Stationären und In-stationären Betriebsverhaltens von Solar-Kraftanlagen mit Paraboloidkonzentrator und Gasturbine
,” Ph.D. thesis, Technische Universität München, Munich, Germany.
7.
Schmuttermair
,
H.
, 1992, “
Experimentelle Simulation und Analyse des Betriebsverhaltens einer Solar-Kraftanlage mit Gasturbine
,” Ph.D. thesis, Technische Universität München, Munich, Germany.
8.
Amsbeck
,
L.
,
Buck
,
R.
,
Heller
,
P.
,
Jedamski
,
J.
, and
Uhlig
,
R.
, 2009, “
Development of a Tube Receiver for a Solar-Hybrid Microturbine System
,” Proceedings of the International SolarPACES Conference, Berlin.
9.
Augsten
,
E.
, 2009, “
Make the Desert Bloom
,”
Sun & Wind Energy
,
Sept.
, pp.
52
55
.
10.
Spelling
,
J.
,
Russ
,
M.
,
Laumert
B.
, and
Fransson
T.
, 2011, “
A Thermoeconomic Study of Hybrid Solar Gas-Turbine Power Plants
,” Proceedings of the International SolarPACES Conference, Granada.
11.
Avila-Marin
A.
, 2011, “
Volumetric Receivers in Solar Thermal Power Plants With Central Receiver System Technology: A Review
,”
Sol. Energy
,
85
, pp.
891
910
.
12.
Schwarzbözl
,
P.
, 2006, “
STEC: A TRNSYS Model Library for Solar Thermal Electric Components
,” Reference Manual Release 3.0, DLR, Köln, Germany.
13.
Kistler
,
B.
, 1986, “
A User’s Manual for DELSOL3
,” Sandia National Laboratories, Albuquerque, NM.
14.
Incropera
,
F.
,
DeWitt
D.
,
Bergman
T.
, and
Lavine
,
A.
, 2007,
Fundamentals of Heat and Mass Transfer
,
6th ed.
,
Wiley
,
New York
.
15.
Marler
,
R.
, and
Arora
J.
, 2004, “
Survey of Multi-Objective Optimization Methods for Engineering
,”
Struct. Multidiscip. Optim.
,
26
, pp.
369
395
.
16.
Molyneaux
,
A.
,
Leyland
,
G.
, and
Favrat
D.
, 2010, “
Environomic Multi-Objective Optimisation of a District Heating Network Considering Centralized and Decentralized Heat Pumps
,”
Energy
,
35
, pp.
751
758
.
17.
Pelster
,
S.
, 1998, “
Environomic Modeling and Optimization of Advanced Combined Cycle Cogeneration Power Plants Including CO2 Separation Options
,” Ph.D. thesis #1791, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
18.
Schwarzbözl
,
P.
,
Buck
,
R.
,
Sugarmen
,
C.
,
Ring
,
A.
,
Crespo
,
J.
,
Altwegg
,
P.
, and
Enrile
,
J.
, 2006, “
Solar Gas Turbine Systems: Design, Cost and Perspectives
,”
Sol. Energy
,
80
, pp.
1231
1240
.
19.
Sicilia
,
M.
, and
Keppler
J.
, 2010, “
Projected Costs of Generating Electricity
,” International Energy Agency, Paris.
20.
Ulrich
,
G.
, and
Vasudevan
,
P.
, 2004,
Chemical Engineering Process Design and Economics, A Practical Guide
,
2nd ed.
,
Process Publishing
,
Lee, NH
.
21.
Pitz-Paal
,
R.
,
Dersch
,
J.
,
Milow
B.
,
Ferriére
,
A.
,
Romero
,
M.
,
Tellez
,
F.
,
Zarza
,
E.
,
Steinfeld
,
A.
,
Langnickel
,
U.
,
Shpilrain
,
E.
,
Popel
,
O.
,
Epstein
,
M.
, and
Karni
,
J.
, 2004, “
ECOSTAR: European Concentrated Solar Thermal Road-Mapping
” Deutsches Zentrum für Luft- und Raumfahrt, Cologne, Germany.
22.
Sargent & Lundy LLC
, 2003, “
Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts
,” Chicago.
23.
Vattenfall
, 1999, Life Cycle Studies of Electricity Production, Stockholm.
24.
Lechon
,
Y.
,
de la Rua
,
C.
, and
Saez
R.
, 2006, “
Life Cycle Environmental Impacts of Electricity Production by Solar Thermal Technology in Spain
,” Proceedings of the International SolarPACES Conference,
Seville
, 2006.
You do not currently have access to this content.