Exhaust gas recirculation has been proposed as a potential strategy for reducing the cost and efficiency penalty associated with postcombustion carbon capture. However, this approach may cause as-yet unresolved effects on the combustion process, including additional potential for the occurrence of thermoacoustic instabilities. Flame dynamics, characterized by the flame transfer function, were measured in traditional swirl stabilized and low-swirl injector combustor configurations, subject to exhaust gas circulation simulated by N2 and CO2 dilution. The flame transfer functions exhibited behavior consistent with a low-pass filter and showed phase dominated by delay. Flame transfer function frequencies were nondimensionalized using Strouhal number to highlight the convective nature of this delay. Dilution was observed to influence the dynamics primarily through its role in changing the size of the flame, indicating that it plays a similar role in determining the dynamics as changes in the equivalence ratio. Notchlike features in the flame transfer function were shown to be related to interference behaviors associated with the convective nature of the flame response. Some similarities between the two stabilization configurations proved limiting and generalization of the physical behaviors will require additional investigation.

References

References
1.
Griffin
,
T.
,
Bucker
,
D.
, and
Pfeffer
,
A.
, 2008,“
Technology Options for Gas Turbine Power Generation With Reduced CO2 Emission
,”
ASME J. Eng. Gas Turbines Power
,
130
(
4
), p.
041801
.
2.
Botero
,
C.
,
Finkenrath
,
M.
,
Bartlett
,
M.
,
Chu
,
R.
,
Choi
,
G.
, and
Chinn
,
D.
, 2009, “
Redesign, Optimization, and Economic Evaluation of a Natural Gas Combined Cycle With the Best Integrated Technology CO2 Capture
,”
Energy Procedia
,
1
(
1
), pp.
3835
3842
.
3.
Bolland
,
O.
, and
Mathieu
,
P.
, 1998, “
Comparison of Two CO2 Removal Options in Combined Cycle Power Plants
,”
Energy Conversion Manage.
,
39
(
16-18
), pp.
1653
1663
.
4.
Hoffmann
,
S.
,
Bartlett
,
M.
,
Finkenrath
,
M.
,
Evulet
,
A.
, and
Ursin
,
T.
, 2009, “
Performance and Cost Analysis of Advanced Gas Turbine Cycles With Precombustion CO2 Capture
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
021701
.
5.
ElKady
,
A. M.
,
Evulet
,
A.
,
Brand
,
A.
,
Ursin
,
T. P.
, and
Lynghjem
,
A.
, 2008, “
Exhaust Gas Recirculation in DLN F-Class Gas Turbines for Post-Combustion CO2 Capture
,”
ASME Conf. Proc. 43130
, pp.
847
854
.
6.
Evulet
,
A. T.
,
ELKady
,
A. M.
,
Branda
,
A. R.
, and
Chinn
,
D.
, 2009, “
On the Performance and Operability of GE’s Dry Low NOx Combustors Utilizing Exhaust Gas Recirculation for Post-Combustion Carbon Capture
,”
Energy Procedia
,
1
(
1
), pp.
3809
3816
.
7.
Rokke
,
P.
, and
Hustad
,
J.
, 2005, “
Exhaust Gas Recirculation in Gas Turbines for Reduction of CO2 Emissions; Combustion Testing with Focus on Stability and Emissions
,”
Int. J. Thermodyn.
,
8
(
4
), pp.
167
173
.
8.
Li
,
H.
,
ElKady
,
A. M.
, and
Evulet
,
A. T.
, 2009, “
Effect of Exhaust Gas Recirculation on NOx Formation in Premixed Combustion System
,” in
47th AIAA Aerospace Sciences Meeting
,
Orlando, FL
, Vol.
AIAA-2009–226
.
9.
Ferguson
,
D.
,
Ranalli
,
J.
, and
Strakey
,
P.
, 2010, “
Influence of Exhaust Gas Recirculation on Combustion Instabilities In CH4 And H2/CH4 Fuel Mixtures
,” in
Proceedings of the ASME Turbo Expo
,
Glasgow, UK
, Vol.
GT2010–23642
.
10.
Ferguson
,
D.
, and
Ranalli
,
J.
, 2011, “
Characterization of Instabilities in a Low-Swirl Injector with Exhaust Gas Recirculation
,” in
49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
,
Orlando, FL
, Vol.
AIAA-2011–517
.
11.
Cheng
,
R. K.
,
Littlejohn
,
D.
,
Strakey
,
P. A.
, and
Sidwell
,
T.
, 2009, “
Laboratory Investigations of a Low-Swirl Injector With H2 and CH4 at Gas Turbine Conditions
,”
Proc. Combus. Inst.
,
32
(
2
), pp.
3001
3009
.
12.
Ducruix
,
S.
,
Durox
,
D.
, and
Candel
,
S.
, 2000, “
Theoretical and Experimental Determinations of the Transfer Function of a Laminar Premixed Flame
,”
Proc. Combus. Inst.
,
28
(
1
), pp.
765
773
.
13.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
, 2010, “
The Combined Dynamics of Swirler and Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
157
(
9
), pp.
1698
1717
.
14.
Lohrmann
,
M.
, and
Buchner
,
H.
, 2005, “
Prediction of Stability Limits for LP and LPP Gas Turbine Combustors
,”
Combust. Sci. Technol.
,
177
(
12
), pp.
2243
2273
.
15.
Kim
,
D.
, and
Park
,
S. W.
, 2010, “
Effects of Hydrogen Addition on Flame Structure and Forced Flame Response to Velocity Modulation in a Turbulent Lean Premixed Combustor
,”
Fuel
,
89
(
11
), pp.
3475
3481
.
16.
Ranalli
,
J.
,
Martin
,
C.
,
Black
,
P.
,
Vandsburger
,
U.
, and
West
,
R.
, 2009, “
Measurement of Flame Transfer Functions in Swirl-Stabilized, Lean-Premixed Combustion
,”
J. Propul. Power
,
25
(
6
), pp.
1350
1354
.
17.
Ranalli
,
J.
, and
Ferguson
,
D.
, 2011, “
Measurement of Flame Frequency Response Functions in a Low-Swirl Flame under Exhaust Gas Recirculation Conditions
,” in
49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
,
Orlando, FL
, Vol.
AIAA-2011–518
.
18.
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
, 2005, “
Combustion Dynamics of Inverted Conical Flames
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
1717
1724
.
19.
Balachandran
,
R.
,
Ayoola
,
B. O.
,
Kaminski
,
C.
,
Dowling
,
A. P.
, and
Mastorakos
,
E.
, 2005, “
Experimental Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations
,”
Combust. Flame
,
143
(
1-2
), pp.
37
55
.
20.
Kim
,
K. T.
,
Lee
,
J. G.
,
Quay
,
B. D
, and
Santavicca
,
D. A.
, 2010, “
Spatially Distributed Flame Transfer Functions for Predicting Combustion Dynamics in Lean Premixed Gas Turbine Combustors
,”
Combust. Flame
,
157
(
9
), pp.
1718
1730
.
21.
Külsheimer
,
C.
, and
Büchner
,
H.
, 2002, “
Combustion Dynamics of Turbulent Swirling Flames
,”
Combust. Flame
,
131
(
1-2
), pp.
70
84
.
22.
Shanbhogue
,
S.
,
Shin
,
D.
,
Hemchandra
,
S.
,
Plaks
,
D.
, and
Lieuwen
,
T.
, 2009, “
Flame Sheet Dynamics of Bluff-Body Stabilized Flames During Longitudinal Acoustic Forcing
,”
Proc. Combus. Inst.
,
32
, pp.
1787
1794
.
23.
Jones
,
B.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
, 2011, “
Flame Response Mechanisms Due to Velocity Perturbations in a Lean Premixed Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
133
(
2
), p.
021503
.
24.
O’Connor
,
J.
, and
Lieuwen
,
T.
, 2012, “
Further Characterization of the Disturbance Field in a Transversely Excited Swirl-Stabilized Flame
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
011501
.
25.
Palies
,
P.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
, 2011, “
Modeling of Premixed Swirling Flames Transfer Functions
,”
Proc. Combust. Inst.
33
(
2
), pp.
2967
2974
.
26.
Preetham
,
Santosh
,
H.
, and
Lieuwen
,
T.
, 2008, “
Dynamics of Laminar Premixed Flames Forced by Harmonic Velocity Disturbances
,”
J. Propul. Power
,
24
(
6
), pp.
1390
1402
.
27.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
, 2003, “
A Unified Model for the Prediction of Laminar Flame Transfer Functions: Comparisons Between Conical and V-Flame Dynamics
,”
Combust. Flame
,
134
(
1-2
), pp.
21
34
.
28.
You
,
D.
,
Huang
,
Y.
, and
Yang
,
V.
, 2005, “
A Generalized Model of Acoustic Response of Turbulent Premixed Flame and Its Application to Gas-Turbine Combustion Instability Analysis
,”
Combust. Sci. Technol.
,
177
(
5-6
), pp.
1109
1150
.
29.
Ranalli
,
J.
,
Ferguson
,
D.
, and
Martin
,
C.
, 2011, “
Simple Analysis of Flame Dynamics Via Flexible Convected Disturbance Models
,”
J. Propul. Power
(submitted).
30.
Acharya
,
V.
,
Shreekrishna
,
Shin
,
D.-H.
, and
Lieuwen
,
T.
, 2012, “
Swirl Effects on Harmonically Excited, Premixed Flame Kinematics
,”
Combust. Flame
,
159
(
3
), pp.
1139
1150
.
31.
Kang
,
D. M.
,
Culick
,
F. E. C.
, and
Ratner
,
A.
, 2007, “
Combustion Dynamics of a Low-Swirl Combustor
,”
Combust. Flame
,
151
(
3
), pp.
412
425
.
32.
Lee
,
J.
, and
Santavicca
,
D.
, 2003, “
Experimental Diagnostics for the Study of Combustion Instabilities in Lean Premixed Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
735
750
.
33.
Otsu
,
N.
, 1979, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst. Man Cybernetics
,
9
(
1
), pp.
62
66
.
34.
Ferguson
,
D.
, and
Ranalli
,
J.
, 2011, “
Utilization of Exhaust Gas Recirculation for Control of Dynamic Combustion Instabilities
,” presented at the
7th US National Technical Meeting of the Combustion Institute
,
Atlanta, GA
.
You do not currently have access to this content.