The prescribed surface curvature distribution blade design (CIRCLE) method can be used for the design of two-dimensional (2D) and three-dimensional (3D) turbomachinery blade rows with continuous curvature and slope of curvature from leading edge (LE) stagnation point to trailing edge (TE) stagnation point and back to the LE stagnation point. This feature results in smooth surface pressure distribution airfoils with inherently good aerodynamic performance. In this paper the CIRCLE blade design method is modified for the design of 2D isolated airfoils. As an illustration of the capabilities of the method, it is applied to the redesign of two representative airfoils used in wind turbine blades: the Eppler 387 airfoil and the NREL S814 airfoil. Computational fluid dynamic analysis is used to investigate the design point and off-design performance of the original and modified airfoils, and compare with experiments on the original ones. The computed aerodynamic advantages of the modified airfoils are discussed. The surface pressure distributions, drag coefficients, and lift-to-drag coefficients of the original and redesigned airfoils are examined. It is concluded that the method can be used for the design of wind turbine blade geometries of superior aerodynamic performance.

References

References
1.
Devinant
,
P.
,
Laverne
,
T.
, and
Hureau
,
J.
, 2002, “
Experimental Study of Wind-Turbine Airfoil Aerodynamics in High Turbulence
,”
J. Wind Eng. Ind. Aerodyn.
,
90
(
6
), pp.
689
707
.
2.
Lissaman
,
P. B. S.
, 1983, “
Low-Reynolds-Number Airfoils
,”
Annu. Rev. Fluid Mech.
,
15
, pp.
223
239
.
3.
Hansen
,
A. C.
, and
Butterfield
,
C. P.
, 1993, “
Aerodynamics of Horizontal Axis Wind Turbines
,”
Annu. Rev. Fluid Mech.
,
25
, pp.
115
149
.
4.
Bertagnolio
,
F.
,
Sorensen
,
N.
,
Johansen
,
J.
, and
Fuglsang
,
P.
, 2001, “
Wind Turbine Airfoil Catalogue
,” Risø National Laboratory, Report Risø-R-1280(EN).
5.
Fuglsang
,
P.
,
Bak
,
C.
,
Gaunaa
,
M.
, and
Antoniou
,
I.
, 2003, “
Wind Tunnel Tests of Risø-B1-18 and Risø-B1-24
,” Risø National Laboratory, Report Risø-R-1375(EN).
6.
Ameku
,
K.
,
Nagai
,
B. M.
, and
Roy
,
J. N.
, 2008, “
Design of a 3 kW Wind Turbine Generator With Thin Airfoil Blades
,”
Exp. Thermal Fluid Sci.
,
32
(
8
), pp.
1723
1730
.
7.
Habali
,
S. M.
, and
Saleh
,
I. A.
, 1995, “
Design and Testing of Small Mixed Airfoil Wind Turbine Blades
,”
Renew. Energy
,
6
(
2
), pp.
161
169
.
8.
Selig
,
M. S.
, and
Maughamer
,
M. D.
, 1992, “
Multipoint Inverse Airfoil Design Method Based on Conformal Mapping
,”
AIAA J.
,
30
(
5
), pp.
1162
1170
.
9.
Selig
,
M. S.
, and
Mughamer
,
M. D.
, 1992, “
Generalized Multipoint Inverse Airfoil Design
,”
AIAA J.
,
30
(
11
), pp.
2618
2625
.
10.
Dahl
,
K. S.
, and
Fuglsang
,
P.
, 1998, “
Design of the Wind Turbine Airfoil Family Risø-A-xx
,” Risø National Laboratory, Report Risø-R-1024(EN).
11.
Li
,
J. Y.
,
Li
,
R.
,
Gao
,
Y.
, and
Huang
,
J.
, 2010, “
Aerodynamic Optimization of Wind Turbine Airfoils Using Response Surface Techniques
,”
Proc. Inst. Mech. Eng. Part A
,
224
(
A6
), pp.
827
838
.
12.
Selig
,
M. S.
, 1994, “
Multipoint Inverse Design of an Infinite Cascade of Airfoils
,”
AIAA J.
,
32
(
4
), pp.
774
782
.
13.
Dang
,
T.
,
Damle
,
S.
, and
Qiu
,
X.
, 2000, “
Euler-Based Inverse Method for Turbomachine Blades, Part 2: Three-Dimensional Flows
,”
AIAA J.
,
38
(
11
), pp.
2007
2013
.
14.
Liu
,
G.-L.
, 2000, “
A New Generation of Inverse Shape Design Problem in Aerodynamics and Aero-Thermoelasticity: Concepts, Theory and Methods
,”
Int. J. Aircraft Eng. Aerosp. Technol.
,
72
(
4
), pp.
334
344
.
15.
Phillipsen
,
B.
, 2005, “
A Simple Inverse Cascade Design Method
,” ASME Paper No. 2005-GT-68575.
16.
Brear
,
M. J.
, and
Hodson
,
H. P.
, 2003, “
The Response of a Laminar Separation Bubble to `Aircraft Engine Representative’ Freestream Disturbances
,”
Exp. Fluids
,
35
(
6
), pp.
610
617
.
17.
Geissler
,
W.
, and
Haselmeyer
,
H.
, 2006, “
Investigation of Dynamic Stall Onset
,”
Aerosp. Sci. Technol.
,
10
(
7
), pp.
590
600
.
18.
Traub
,
L. W.
, and
Cooper
,
E.
, 2008, “
Experimental Investigation of Pressure Measurement and Airfoil Characteristics at Low Reynolds Numbers
,”
J. Aircraft
,
45
(
4
), pp.
1322
1333
.
19.
Savaliya
,
S. B.
,
Kumar
,
S. P.
, and
Mittal
,
S.
, 2010, “
Laminar Separation Bubble on an Eppler 61 Airfoil
,”
Int. J. Numer. Methods Fluids
,
64
(
6
), pp.
627
652
.
20.
Henderson
,
A. D.
, and
Walker
,
G. J.
, 2010, “
Observations of Transition Phenomena on a Controlled Diffusion Compressor Stator With a Circular Arc Leading Edge
,”
ASME J. Turbomachin.
,
132
(
3
), p.
031002
.
21.
Bak
,
C.
,
Madsen
,
H. A.
,
Fuglsang
,
P.
, and
Rasmussen
,
F.
, 1998, “
Double Stall
,” Risø National Laboratory, Report Risø-R-1043(EN).
22.
Bak
,
C.
,
Madsen
,
H. A.
,
Fuglsang
,
P.
, and
Rasmussen
,
F.
, 1999, “
Observations and Hypothesis of Double Stall
,”
Wind Energy
,
2
(
4
), pp.
195
210
.
23.
Bak
,
C.
, and
Fuglsang
,
P.
, 2002, “
Modification of the NACA 63(2)-415 Leading Edge for Better Aerodynamic Performance
,”
ASME J. Solar Energy Eng.
,
124
(
4
), pp.
327
334
.
24.
McMasters
,
J. H.
, and
Henderson
,
M. L.
, 1980, “
Low Speed Single Element Airfoil Synthesis
,”
Tech. Soaring
,
6
(
2
), pp.
1
21
.
25.
Leipold
,
R.
,
Boese
,
M.
, and
Fottner
,
L.
, 2000, “
The Influence of Technical Surface Roughness Caused by Precision Forging on the Flow Around a Highly Loaded Compressor Cascade
,”
ASME J. Turbomach.
,
122
(
3
), pp.
416
424
.
26.
Montomoli
,
F.
,
Hodson
,
H.
, and
Haselbach
,
F.
, 2010, “
Effect of Roughness and Unsteadiness on the Performance of a New Low Pressure Turbine Blade at Low Reynolds Numbers
,”
ASME J. Turbomach.
,
132
(
3
), p.
031018
.
27.
Korakianitis
,
T.
, 1987, “
A Design Method for the Prediction of Unsteady Forces on Subsonic, Axial Gas-Turbine Blades
,”
Doctoral dissertation
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
28.
Korakianitis
,
T.
, 1989, “
Design of Airfoils and Cascades of Airfoils
,”
AIAA J.
,
27
(
4
), pp.
455
461
.
29.
Korakianitis
,
T.
, 1993, “
Hierarchical Development of Three Direct-Design Methods for Two-Dimensional Axial-Turbomachinery Cascades
,”
ASME J. Turbomach.
,
115
(
2
), pp.
314
324
.
30.
Korakianitis
,
T.
, 1993, “
Prescribed-Curvature Distribution Airfoils for the Preliminary Geometric Design of Axial Turbomachinery Cascades
,”
ASME J. Turbomach.
,
115
(
2
), pp.
325
333
.
31.
Korakianitis
,
T.
, and
Papagiannidis
,
P.
, 1993, “
Surface-Curvature-Distribution Effects on Turbine-Cascade Performance
,”
ASME J. Turbomach.
,
115
(
2
), pp.
334
341
.
32.
Korakianitis
,
T.
,
Hamakhan
,
I. A.
,
Rezaienia
,
M. A.
, and
Wheeler
,
A. P. S.
, 2011, “
Two- and Three-Dimensional Prescribed Surface Curvature Distribution Blade Design (CIRCLE) Method for the Design of High Efficiency Turbines, Compressors, and Isolated Airfoils
,”
ASME J. Turbomach.
(in press).
33.
Korakianitis
,
T.
,
Hamakhan
,
I. A.
,
Rezaienia
,
M. A.
,
Wheeler
,
A. P. S.
,
Avital
,
E. J.
, and
Williams
,
J. J. R.
, 2012, “
Design of High-Efficiency Turbomachinery Blades for Energy Conversion Devices With the Three-Dimensional Prescribed Surface Curvature Distribution Blade Design (CIRCLE) Method
,”
Appl. Energy
,
89
, pp.
215
227
.
34.
Korakianitis
,
T.
, and
Wegge
,
B. H.
, 2002, “
Three Dimensional Direct Turbine Blade Design Method
,” AIAA 32nd Fluid Dynamics Conference and Exhibit, St. Louis, Missouri, AIAA Paper No. 2002-3347.
35.
Okapuu
,
U.
, 1974, “
Some Results From Tests on a High Work Axial Gas Generator Turbine
,” ASME Paper No. 74-GT-81.
36.
Gostelow
,
J. P.
, 1976, “
A New Approach to the Experimental Study of Turbomachinery Flow Phenomena
,” ASME paper 76-GT-47.
37.
Wagner
,
J. H.
,
Dring
,
R. P.
, and
Joslyn
,
H. D.
, 1984, “
Inlet Boundary Layer Effects in an Axial Compressor Rotor: Part 1—Blade-To-Blade Effects
,” ASME Paper No. 84-GT-84.
38.
Sharma
,
O. P.
,
Pickett
,
G. F.
, and
Ni
,
R. H.
, 1990, “
Assessment of Unsteady Flows in Turbines
,” ASME Paper No. 90-GT-150.
39.
Hourmouziadis
,
J.
,
Buckl
,
F.
, and
Bergmann
,
P.
, 1987, “
The Development of the Profile Boundary Layer in a Turbine Environment
,”
ASME J. Turbomach.
,
109
(
2
), pp.
286
295
.
40.
Hodson
,
H. P.
, and
Dominy
,
R. G.
, 1987, “
Three-Dimensional Flow in a Low Pressure Turbine Cascade at its Design Condition
,”
ASME J. Turbomach.
,
109
(
2
), pp.
177
185
.
41.
Hodson
,
H. P.
, and
Dominy
,
R. G.
, 1987, “
The Off-Design Performance of a Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
109
(
2
), pp.
201
209
.
42.
Hodson
,
H. P.
, 1985, “
Boundary-Layer Transition and Separation Near the Leading Edge of a High-Speed Turbine Blade
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
127
134
.
43.
Goodhand
,
M. N.
, and
Miller
,
R. J.
, 2011, “
Compressor Leading Edge Spikes: A New Performance Criterion
,”
ASME J. Turbomach.
,
133
(
2
), p.
021006
.
44.
Wheeler
,
A. P. S.
,
Sofia
,
A.
, and
Miller
,
R. J.
, 2009, “
The Effect of Leading-Edge Geometry on Wake Interactions in Compressors
,”
ASME J. Turbomach.
,
131
(
4
), p.
041013
.
45.
Stow
,
P.
, 1989, “
Blading Design for Multi-Stage HP Compressors
,”
Blading Design for Axial Turbomachines
,
(AGARD Lecture Series 167)
.
46.
Corral
,
R.
, and
Pastor
,
G.
, 2004, “
Parametric Design of Turbomachinery Airfoils Using Highly Differentiable Splines
,”
J. Propul. Power
,
20
(
2
), pp.
335
343
.
47.
Hamakhan
,
I. A.
, and
Korakianitis
,
T.
, 2010, “
Aerodynamic Performance Effects of Leading Edge Geometry in Gas Turbine Blades
,”
Appl. Energy
,
87
(
5
), pp.
1591
1601
.
48.
Kim
,
H.
,
Koc
,
S.
, and
Nakahashi
,
K.
, 2005, “
Surface Modification Method for Aerodynamic Design Optimization
,”
AIAA J.
,
43
(
4
), pp.
727
740
.
49.
Samad
,
A.
, and
Kim
,
K. Y.
, 2008, “
Shape Optimization of an Axial Compressor Blade by Multi-Objective Genetic Algorithm
,”
Proc. Inst. Mech. Eng. Part A
,
222
(
A6
), pp.
599
611
.
50.
McGhee
,
R. J.
, and
Walker
,
B. S.
, 1988, “
Experimental Results for the Eppler 387 Airfoil at Low Renolds Numbers in the Langley Low Pressure Turbine Tunnel
,” NASA-TM-4062.
51.
Somers
,
D. M.
, 1997, “
Design and Experimental Results for the S814 Airfoil
,” National Renewable Energy Laboratory, Report NREL/SR-440-6919.
You do not currently have access to this content.